Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 690: 149219, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37995451

RESUMEN

There has been a growth in the use of plant compounds as biological products for the prevention and treatment of various diseases, including cancer. As a phenolic compound, p-Coumaric acid (p-CA) demonstrates preferrable biological effects such as anti-cancer activities. A nano-liposomal carrier containing p-CA was designed to increase the anticancer effectiveness of this compound on melanoma cells (A375). To determine the characteristics of synthesized liposomes, encapsulation efficiency was measured. In addition, the particle size was measured utilizing DLS, FTIR, and morphology examination using SEM. In vitro release was also studied through the dialysis method, while toxicity was evaluated using the MTT assay. To determine apoptotic characteristics, biotechnology tools like flow cytometry, real time PCR, and atomic force microscopy (AFM) were employed. The findings indicated that in the cells treated with the liposomal form of p-CA, the amount of elastic modulus was higher compared to its free form. Kinetic modeling indicated that the best fitting model was zero-order.


Asunto(s)
Liposomas , Melanoma , Humanos , Melanoma/tratamiento farmacológico , Ácidos Cumáricos/farmacología , Apoptosis
2.
Cell Biochem Funct ; 42(1): e3900, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38111127

RESUMEN

The deadliest type of skin cancer, malignant melanoma, is also the reason for the majority of skin cancer-related deaths. The objective of this article was to investigate the efficiency of free caffeic acid phenethyl ester (CAPE) and liposomal CAPE in inducing apoptosis in melanoma cells (A375) in in vitro. CAPE was loaded into liposomes made up of hydrogenated soybean phosphatidylcholine, cholesterol, and 1,2-distearoyl-sn-glycero-3 phosphoethanolamine-N-[methoxy (polyethylene glycol)-2000], and their physicochemical properties were assessed. (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test was performed for comparing the cytotoxicity of free CAPE and liposomal CAPE at dosages of 10, 15, 25, 50, 75 and the highest dose of 100 µg/mL for period of 24 and 48 h on A375 cell line to calculate IC50. Apoptosis and necrosis were evaluated in A375 melanoma cancer cells using flow cytometry. Atomic force microscopy was utilized to determine the nanomechanical attributes of the membrane structure of A375 cells. To determine whether there were any effects on apoptosis, the expression of PI3K/AKT1 and BAX/BCL2 genes was analyzed using the real-time polymerase chain reaction technique. According to our results, the maximum amount of drug release from nanoliposomes was determined to be 91% and the encapsulation efficiency of CAPE in liposomes was 85.24%. Also, the release of free CAPE was assessed to be 97%. Compared with liposomal CAPE, free CAPE showed a greater effect on reducing the cancer cell survival after 24 and 48 h. Therefore, IC50 values of A375 cells treated with free and liposomal CAPE were calculated as 47.34 and 63.39 µg/mL for 24 h. After 48 h of incubation of A375 cells with free and liposomal CAPE, IC50 values were determined as 30.55 and 44.83 µg/mL, respectively. The flow cytometry analysis revealed that the apoptosis induced in A375 cancer cells was greater when treated with free CAPE than when treated with liposomal CAPE. The highest nanomechanical changes in the amount of cell adhesion forces, and elastic modulus value were seen in free CAPE. Subsequently, the greatest decrease in PI3K/AKT1 gene expression ratio occurred in free CAPE.


Asunto(s)
Melanoma , Alcohol Feniletílico , Neoplasias Cutáneas , Humanos , Melanoma/tratamiento farmacológico , Melanoma/patología , Línea Celular Tumoral , Liposomas , Alcohol Feniletílico/farmacología , Alcohol Feniletílico/uso terapéutico , Neoplasias Cutáneas/patología , Ácidos Cafeicos/farmacología , Ácidos Cafeicos/química , Ácidos Cafeicos/uso terapéutico , Apoptosis , Fosfatidilinositol 3-Quinasas/metabolismo
3.
Medicina (Kaunas) ; 59(2)2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36837502

RESUMEN

Background and Objectives: Bromelain and ficin are aqueous extracts from fruits of Ananas comosus and Ficus carcia plants, used widely for medical applications. Angiotensin-converting enzyme 2 (ACE2) is a homolog of ACE, degrading Ang II to angiotensin 1-7 and decreasing the cellular concentration of Ang II. Materials and Methods: In this study, we investigated the ACE2-inhibitory, antiproliferative, and apoptosis-inducing effects of ficin and bromelain on caco-2 cells. Results: We found that bromelain and ficin significantly reduced the viability of human colon cancer cells with IC50 value concentrations of 8.8 and 4.2 mg/mL for bromelain after 24 and 48 h treatments, and 8.8 and 4.2 mg/mL for ficin after 24 and 48 h treatments, respectively. The apoptosis of the caco-2 cell line treated with bromelain was 81.04% and 56.70%, observed after 24 and 48 h. Total apoptotic proportions in caco-2 cells treated with ficin after 24 and 48 h were 83.7% and 73.0%. An amount of 1.6 mg/mL of bromelain and ficin treatments on caco-2 cells after 24 h revealed a higher decrease than that of other concentrations in the expression of ACE2 protein. Conclusions: In conclusion, bromelain and ficin can dose-dependently decrease the expression of ACE2 protein in caco-2 cells.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Neoplasias del Colon , Humanos , Bromelaínas/farmacología , Ficaína , Células CACO-2
4.
Mol Biol Rep ; 49(11): 11049-11060, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36097117

RESUMEN

For more than seven decades, methotrexate has been used all over the world for treatment of different diseases such as: cancer, autoimmune diseases, and rheumatoid arthritis. Several studies have addressed its formula, efficacy, and delivery methods in recent years. These studies have been focused on the effectiveness of different nanoparticles on drug delivery, delivery of the drug to the target cells, and attenuation of harm to the host cell. Whereas, the main usages of methotrexate are in cancer treatment field, this review provided a brief perspective into using different nanoparticles and their role in the treatment of different cancers.


Asunto(s)
Artritis Reumatoide , Nanopartículas , Neoplasias , Humanos , Metotrexato/uso terapéutico , Artritis Reumatoide/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Neoplasias/tratamiento farmacológico
5.
Mol Biol Rep ; 48(6): 5161-5169, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34254227

RESUMEN

Quercetin is one of the major flavonoids and it appears to have cytotoxic effects on various cancer cells through regulating the apoptosis pathway genes such as BAX and BCL2. Combination of Quercetin (Q) with other compounds can increase its effectiveness. In the present study, the effects of the Quercetin and its esterified derivatives on viability, nanomechanical properties of cells, and BAX/BCL-2 gene expression were investigated. Using the MTT and flow cytometry assays, the cytotoxic potential, apoptosis, and necrosis were investigated. The AFM assay was performed to find the nanomechanical properties of cells as the elastic modulus value and cellular adhesion forces. The BAX/BCL2 gene expression was investigated through the Real-Time PCR. The results showed that the esterification of Quercetin with linoleic acid (Q-LA) and α-linolenic acid (Q-ALA) increased the cytotoxic potential of Q. The elastic modulus value and cellular adhesion forces were increased using the esterified derivatives and the highest ratio of BAX/BCL2 gene expression was observed in Q-LA. Esterified Quercetin derivatives have a higher cytotoxic effect than the un-esterified form in a dose-dependent manner. Esterified derivatives caused the nanomechanical changes and pores formation on the cytoplasmic membrane. One of the internal apoptosis pathway regulation mechanisms of these compounds is increasing the BAX/BCL2 gene expression ratio.


Asunto(s)
Apoptosis/efectos de los fármacos , Quercetina/farmacología , Antineoplásicos/farmacología , Antioxidantes/metabolismo , Apoptosis/genética , Membrana Celular/metabolismo , Supervivencia Celular/efectos de los fármacos , Esterificación , Ácidos Grasos/metabolismo , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-6/farmacología , Expresión Génica/efectos de los fármacos , Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Células MCF-7 , Necrosis , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Quercetina/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
6.
Med J Islam Repub Iran ; 35: 158, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35341082

RESUMEN

Background: Breast cancer is the most common type of cancer among women worldwide. Traditional treatments, including chemotherapy, surgery, mastectomy, and radiotherapy, are commonly used. Because of the limitation of the aforementioned methods, novel treatment strategies are needed. Methotrexate is a chemotherapeutic drug, which is commonly used to treat breast cancer. Because of the side effects of the free drug, the liposomal form of the drug is suggested. Methods: Liposomal methotrexate was prepared and the encapsulation efficiency was measured. Moreover, the particle size and the zeta potential were measured. The liposome morphology was confirmed using transmission electron microscopy. The MTT assay was done to examine the cytotoxicity of free and encapsulated methotrexate on BT-474 cell line. The Annexin-V/PI dual staining assay was performed to assess the apoptosis in BT-474 breast cancer cells via the flow cytometry method. Results: The transmission electron microscopy results confirmed the integrated and spherical structure of the nanoparticles. The results of drug release showed that in acidic pH (5.4), more than 90% of the drug was released after 24 hours, which was higher than 2 other pHs. Furthermore, the IC50 value of liposomal methotrexate was determined as 2.15 and 0.82 mg/mL for 24 and 48 hours. The flow cytometry results confirmed that liposomal methotrexate had a greater cytotoxic effect on cancer cells compared with free methotrexate. Conclusion: Because of the advantages of liposomal based nanocarriers, in this study, liposomal methotrexate could be suggested as an appropriate candidate to treat breast cancer.

7.
J Liposome Res ; 29(1): 53-65, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29621912

RESUMEN

Synergistic effect of combined antibodies targeting distinct epitopes of a particular tumour antigen has encouraged some clinical trial studies and is now considered as an effective platform for cancer therapy. Providing several advantages over conventional antibodies, variable domain of heavy chain of heavy chain antibodies (VHH) is now major tools in diagnostic and therapeutic applications. Active targeting of liposomal drugs is a promising strategy, resulting in enhanced binding and improved cytotoxicity of tumour cells. In the present study, we produced four anti-HER2 recombinant VHHs and purified them via native and refolding method. ELISA and flow cytometry analysis confirmed almost identical function of VHHs in refolded and native states. Using a mixture of four purified VHHs, PEGylated liposomal doxorubicin was targeted against HER2-overexpressing cells. The drug release was analyzed at pH 7.4, 6.4 and 5.5 and dynamic light-scattering detector and TEM micrograph was applied to characterize the produced nanoparticles. The binding efficiency of these nanoparticles to BT474 and SKBR3 as HER2-positive and MCF10A as HER2-negative cell line was examined by flow cytometry. Our results indicated effective encapsulation of about 94% of the total drug in immunoliposomes. Flow cytometry results verified receptor-specific binding of targeted liposomes to SKBR3 and BT474 cell lines and more efficient binding was observed for liposomes conjugated with oligoclonal VHHs mixture compared with monoclonal VHH-targeted liposomes. Oligoclonal nanoparticles also showed more cytotoxicity compared with non-targeted liposomes against HER2-positive tumour cells. Oligoclonal targeting of liposomes was represented as a promising strategy for the treatment of HER2-overexpressing breast cancers.


Asunto(s)
Doxorrubicina/análogos & derivados , Bandas Oligoclonales , Receptor ErbB-2 , Antineoplásicos/administración & dosificación , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/inmunología , Línea Celular Tumoral , Doxorrubicina/administración & dosificación , Sistemas de Liberación de Medicamentos , Femenino , Humanos , Liposomas/química , Terapia Molecular Dirigida , Nanopartículas , Polietilenglicoles/administración & dosificación , Receptor ErbB-2/antagonistas & inhibidores , Receptor ErbB-2/inmunología
8.
Inflamm Res ; 67(10): 801-812, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30083975

RESUMEN

BACKGROUND: Calprotectin (S100A8/S100A9), a heterodimeric EF-hand Ca2+ binding protein, are abundant in cytosol of neutrophils and are involved in inflammatory processes and several cancerous pathogens. OBJECTIVE: The purpose of the present systematic review is to evaluate the pro- and anti-tumorigenic functions of calprotectin and its relation to inflammation. MATERIALS AND METHODS: We conducted a review of studies published in the Medline (1966-2018), Scopus (2004-2018), ClinicalTrials.gov (2008-2018) and Google Scholar (2004-2018) databases, combined with studies found in the reference lists of the included studies. RESULTS: Elevated levels of S100A8/S100A9 were detected in inflammation, neoplastic tumor cells and various human cancers. Recent data have explained that many cancers arise from sites of infection, chronic irritation, and inflammation. The inflammatory microenvironment which largely includes calprotectin, has an essential role on high producing of inflammatory factors and then on neoplastic process and metastasis. CONCLUSION: Scientists have shown different outcomes in inflammation, malignancy and apoptosis whether the source of the aforementioned protein is extracellular or intracellular. These findings are offering new insights that anti-inflammatory therapeutic agents and anti-tumorigenic functions of calprotectin can lead to control cancer development.


Asunto(s)
Inflamación/metabolismo , Complejo de Antígeno L1 de Leucocito/metabolismo , Neoplasias/metabolismo , Animales , Basigina/metabolismo , Humanos , Complejo de Antígeno L1 de Leucocito/química , NADPH Oxidasas/metabolismo , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Receptor Toll-Like 4/metabolismo
9.
Prep Biochem Biotechnol ; 47(8): 795-803, 2017 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-28636463

RESUMEN

Despite being widely used in immunotherapy of cancer, whole antibodies are limited by several disadvantages. This has led to the advent of novel biomolecules such as nanobodies. Taguchi method is a statistical experimental design to study the effect of multiple variables in biological processes. In an effort to overexpress a recombinant anti-human epidermal growth factor receptor type 2 (HER2) nanobody, we performed a detailed study to find optimal condition of temperature, induction, culture media, vector, and host strain, using Taguchi methodology. A total of 16 various experiments were designed. Total protein of the formulated cultures were assessed by Bradford test and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, followed by size exclusion high performance liquid chromatography to quantify the relative concentration of the nanobody in different expression settings. Western blotting was performed to confirm the expression of the anti-HER2 nanobody. When, individually, optimum parameters determined by Taguchi were applied, including SHuffle strain cultured in LB medium, induced with 0.4 mM isopropyl-ß-D-thio-galactoside for 18 h at 24°C, production yield further increased by about 9% (25.4 mg/L), compared to the highest expression setting. Flow cytometry and enzyme-linked immunosorbent assay result indicated improved protein binding in optimized conditions. Overall, our findings provide a basis for further investigations on economical production of recombinant nanobodies to improve production yield and activity.


Asunto(s)
Escherichia coli/genética , Receptor ErbB-2/inmunología , Anticuerpos de Dominio Único/genética , Anticuerpos de Dominio Único/inmunología , Línea Celular Tumoral , Expresión Génica , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/aislamiento & purificación , Anticuerpos de Dominio Único/aislamiento & purificación , Transformación Genética
10.
J Nurs Manag ; 25(5): 354-365, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28294446

RESUMEN

AIMS: To examine the nature and characteristics of both received and provided mutual support in a social network within an acute care hospital unit. BACKGROUND: Current evidence regarding the social network in the health care workforce reveals the nature of social ties. Most studies of social network-related support that measured the characteristics of social support used self-reported perception from workers receiving support. There is a gap in studies that focus on back-up behaviour. METHODS: The evaluation included a social network analysis of a nursing unit employing 54 staff members. A 12 item electronic survey was administered. Descriptive statistics were calculated using the Statistical Package for the Social Sciences. Social network analyses were carried out using ucinet, r 3.2.3 and gephi. RESULTS: Based on the study findings, as providers of mutual support the nursing staff claimed to give their peers more help than these peers gave them credit for. Those who worked overtime provided more mutual support. CONCLUSION: Mutual support is a key teamwork characteristic, essential to quality and safety in hospital nursing teams that can be evaluated using social network analysis. IMPLICATIONS FOR NURSING MANAGEMENT: Because of a discrepancy regarding receiving and providing help, examining both receiver and provider networks is a superior approach to understanding mutual support.


Asunto(s)
Relaciones Interprofesionales , Enfermeras y Enfermeros/psicología , Apoyo Social , Lugar de Trabajo/psicología , Adulto , Comunicación , Femenino , Humanos , Masculino , Persona de Mediana Edad , New England , Enfermeras y Enfermeros/normas , Encuestas y Cuestionarios , Lugar de Trabajo/normas
11.
J Biomol Struct Dyn ; 41(1): 81-90, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-34796779

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a disease which caused by a novel beta coronavirus. Structural and non-structural proteins are expressed by the virus gene fragments. The RBD of the S1 protein of the virus has the ability to interact with potent antibodies including CR3022, which was characterized to target the S protein of the virus which can efficiently neutralize the SARS-CoV in vitro and in vivo. In current study, we aimed to design CR3022 based antibody with high affinity compared with wild-type CR3022 using MD simulation method. Two variants were designed based on the amino acid binding conformation and the free binding energy of the critical amino acids which involved in CR3022-RBD interactions were evaluated. In this study three complexes were evaluated; CR3022-RBD, V1-RBD and V2-RBD using molecular dynamics simulations carried out for 100 ns in each case. Then, all the complexes were simulated for 100 ns. In the next step, to calculate the free binding affinity of the wild CR3022 and mutant antibody (V1 and V2) with RBD, the PMF method was performed. The RMSD profile demonstrated that all three complexes were equilibrated after 85 ns. Furthermore, the free binding energy results indicated that the V2-RBD complex has the higher binding affinity than V1-RBD and CR3022-RBD complexes. It should be noted that in above variants, the electrostatic energy and the number of H-bonds between the antibody and RBD increased. Thus, it is suggested that both designed antibodies could be considered as appropriate candidates for covid-19 disease treatment.Communicated by Ramaswamy H. Sarma.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Unión Proteica
12.
Biologia (Bratisl) ; : 1-11, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-37363641

RESUMEN

No approved vaccine exists for Klebsiella pneumoniae yet. Outer membrane protein-K17 (OMPK17) is involved in K. pneumoniae pathogenesis. No information has been found about OMPK17 dominant epitopes in the literature. Therefore, this study aimed to predict both T cell and B cell epitopes of K. pneumoniae OMPK17 via immunoinformatics approaches. Both T cell (class-I and II) and B cell (linear and discontinuous) epitopes of OMPK17 were predicted. Several screening analyses were performed including clustering, immunogenicity, human similarity, toxicity, allergenicity, conservancy, docking, and structural/physicochemical suitability. The results showed that some regions of OMPK17 have more potential as epitopes. The most possible epitopes were found via several analyses including the selection of higher-scoring epitopes, the epitopes predicted with more tools, more immunogenic epitopes, the epitopes capable of producing interferon-gamma, the epitopes with more dissimilarity to human peptides, and non-toxic and non-allergenic epitopes. By comparing the best T cell and B cell epitopes, we reached a 25-mer peptide containing both T cell (class-I and class-II) and B cell (linear) epitopes and comprising appropriate physicochemical characteristics that are required for K. pneumoniae vaccine development. The in vitro/in vivo study of this peptide is recommended to clarify its actual efficiency and efficacy. Supplementary information: The online version contains supplementary material available at 10.1007/s11756-023-01371-0.

13.
J Biomol Struct Dyn ; 41(4): 1378-1387, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-34974821

RESUMEN

Hyperpigmentation is a disorder caused by increased melanin deposition and changes in skin pigmentation. Inhibition of tyrosinase activity contributes to the control of food browning and skin pigmentation diseases. The effects of arachidonic acid (AA) on tyrosinase activity were examined using different spectroscopy methods including UV-VIS spectrophotometry, fluorescence spectroscopy, circular dichroism (CD) differential scanning calorimetry, and molecular dynamics (MD) simulations. Based on the kinetic results, arachidonic acid showed mixed-type of inhibition with Ki = 4.7 µM. Fluorescence and CD studies showed changes of secondary and tertiary structures of enzyme and a reduction of α-helix* amino acids after its incubation with different concentrations of AA, which is also confirmed by DSSP analysis. In addition, differential scanning calorimetry (DSC) studies showed a decrease in thermodynamic stability of enzyme from Tm = 338.65k for sole enzyme after incubation with AA in comparison with complex enzyme with Tm= 334.26k, ΔH =7.52 kJ/mol, and ΔS = 0.15 kJ/mol k. Based on the theoretical methods, it was found that the interaction between enzyme and AA follows an electrostatic manner with ΔG = -8.314 kJ/mol and ΔH = -12.9 kJ/mol. The MD results showed the lowest flexibility in the complex amino acids and minimal fluctuations in AA interaction with tyrosinase in Residue 240 to 260 and 66 to 80. Thus, AA inhibitory and structural and thermodynamic instability of tyrosinase supported advantages of this fatty acid for prevention of medical hyperpigmentation. Therefore, it is a good candidate for cosmetic applications. Communicated by Ramaswamy H. Sarma.


Asunto(s)
Aminoácidos , Monofenol Monooxigenasa , Ácido Araquidónico , Dicroismo Circular , Termodinámica
14.
Iran J Basic Med Sci ; 25(4): 489-496, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35656077

RESUMEN

Objectives: Humic acid (HA) and Fulvic acid (FA) are major members of humic substances, which are extracted from organic sources including soil and peat. The pro-apoptotic and anti-melanogenic effects of HA and FA at the cellular and molecular levels in the A375 human melanoma cell line were examined in this study. Materials and Methods: The cytotoxicity effect of HA and FA were evaluated by cell viability assay. Apoptosis and cell cycle were investigated by flow cytometry. Real-time PCR was carried out to measure the expression of BAX, BCL-2, and Tyr genes. Moreover, the changes in nanomechanical properties were determined through atomic force microscopy (AFM). Results: It was found that HA and FA decrease cell viability with an IC50 value of 50 µg/ml (dose-dependent) for 14 hr, arrested cells in the G0/G1 phase, and increased the sub-G1 phase (induce apoptosis). Based on the AFM analysis, Young's modulus and adhesion force values were increased, also ultrastructural characteristics of cells were changed. Results of Real-time PCR revealed that HA and FA lead to a decrease in the expressions of BCL-2 and Tyr genes, and increase the BAX gene expression. Conclusion: These results exhibited that HA and FA possess pro-apoptotic effects through increasing the BAX/ BCL-2 expression in A375 cells. These molecular reports were confirmed by cellular nanomechanical assessments using AFM and flow cytometry. In addition, HA and FA inhibited melanogenesis by decreasing the expression of the Tyr gene. It is worthwhile to note that, HA and FA can be regarded to design new anti-cancer and anti-melanogenesis products.

15.
J Biomol Struct Dyn ; 40(12): 5566-5576, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-33438525

RESUMEN

Regarding the urgency of therapeutic measures for coronavirus disease 2019 (COVID-19) pandemic, the use of available drugs with FDA approval is preferred because of the less time and cost required for their development. In silico drug repurposing is an accurate way to speed up the screening of the existing FDA-approved drugs to find a therapeutic option for COVID-19. The similarity in SARS-CoV-2 and HIV-1 fusion mechanism to host cells can be a key point for Inhibit SARS-CoV-2 entry into host cells by HIV fusion inhibitors. Accordingly, in this study, an HIV-1 fusion inhibitor called Enfuvirtide (Enf) was selected. The affinity and essential residues involving in the Enf binding to the S2 protein of SARS-CoV-2, HIV-1 gp41 protein and angiotensin-converting enzyme 2 (ACE-2) as a negative control, was evaluated using molecular docking. Eventually, Enf-S2 and Enf-gp41 protein complexes were simulated by molecular dynamics (MD) in terms of binding affinity and stability. Based on the most important criteria such as docking score, cluster size, energy and dissociation constant, the strongest interaction was observed between Enf with the S2 protein. In addition, MD results confirmed that Enf-S2 protein interaction was remarkably stable and caused the S2 protein residues to undergo the fewest fluctuations. In conclusion, it can be stated that Enf can act as a strong SARS-CoV-2 fusion inhibitor and demonstrates the potential to enter the clinical trial phase of COVID-19. Communicated by Ramaswamy H. Sarma.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Reposicionamiento de Medicamentos , Enfuvirtida , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2 , Reposicionamiento de Medicamentos/métodos , Enfuvirtida/farmacología , VIH-1 , Humanos , Simulación del Acoplamiento Molecular , SARS-CoV-2/efectos de los fármacos , Inhibidores de Proteínas Virales de Fusión
16.
Probiotics Antimicrob Proteins ; 14(6): 1130-1138, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35094296

RESUMEN

Saccharomyces boulardii, a variety of S. cerevisiae, is used as a probiotic yeast in food and drug industries. However, S. boulardii is an opportunistic pathogen, and the supernatant of this organism has recently been recommended for its health-promoting benefits. Breast cancer is the most frequent cancer disease in women worldwide. The objective of this study was to investigate the effects of S. boulardii supernatant (SBS) on cell viability, inducing apoptosis and suppression of survivin gene expression in MCF-7 and MCF-7/MX as human non-drug-resistant and multidrug-resistant breast cancer cells respectively. The IC50 value of SBS against MCF-7 was calculated 1037, 542, and 543 µg/mL for 24, 48, and 72 h treatments, respectively. Also, this value against MCF-7/MX cells were measured 1242, 616, and 444 µg/mL after 24, 48, and 72 h respectively. We found that suppression of survivin gene expression should be one of the main molecular antitumor mechanisms which is contributed to apoptosis in breast cancer cells. However, anticancer activity of SBS was observed more efficient against MCF-7 than that against MCF-7/MX cells. SBS is suggested to be considered as one of the prospective anticancer drugs to treat human breast carcinoma. More investigations especially in vivo studies are strongly recommended to be implemented to characterize other antitumor mechanisms of SBS against breast carcinoma.


Asunto(s)
Neoplasias de la Mama , Probióticos , Saccharomyces boulardii , Humanos , Femenino , Saccharomyces boulardii/genética , Saccharomyces cerevisiae/metabolismo , Survivin/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Estudios Prospectivos , Probióticos/farmacología , Probióticos/metabolismo
17.
J Biomol Struct Dyn ; 40(1): 166-176, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-32820713

RESUMEN

Klebsiella pneumoniae (K. pneumoniae) is a causative agent of severe infections in humans. There is no publically available vaccine for K. pneumoniae infections yet. Here, using comprehensive immunoinformatics methods, T-cell-specific epitopes of four type 1 fimbriae antigens of K. pneumoniae were predicted and evaluated as potential vaccine candidates. Both CD8+ (class I) and CD4+ (class II) T-cell-specific epitopes were predicted and the epitopes similar to human proteome were excluded. Subsequently, the windows of class-II epitopes containing class-I epitopes were determined. The immunogenicity, IFN-γ production and population coverage were also estimated. Using the 3D structure of HLA and epitopes, molecular docking was carried out. Two best epitopes were selected for molecular dynamics studies. Our prediction and analyses resulted in the several dominant epitopes for each antigen. The docking results showed that all selected epitopes can bind to their restricted HLA molecules with high affinity. The molecular dynamics results indicated the stability of system with minimum possible deviation, suggesting the selected epitopes can be promising candidates for stably binding to HLA molecules. Altogether, our results suggest that the selected T-cell-specific epitopes of K. pneumoniae fimbriae antigens, particularly the two epitopes confirmed by molecular dynamics, can be applied for vaccine development. However, the in vitro and in vivo studies are required to authenticate the results of the present study.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Epítopos de Linfocito T , Klebsiella pneumoniae , Biología Computacional , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Linfocitos T , Vacunas de Subunidad
18.
Food Sci Nutr ; 9(2): 692-700, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33598154

RESUMEN

Natural anticancer drug and compounds with other great benefits are of interest recently due to lower side effects than chemotherapy for cancer treatment and prevention. Different natural and synthetic drugs have been suggested to be used for treatment of gastric cancers, the second deadly cancer worldwide. The aim of this study was to investigate anticancer activity of SBS including inducing apoptosis and inhibition of survivin gene expression in gastric cancer cells. We evaluated cell viability, inducing apoptosis and change in survivin gene expression of EPG85-257P (EPG) and EPG85-257RDB (resistant to Daunorubicin, RDB) cell lines under exposure of SBS after 24, 48, and 72 hr. We found that SBS decreased cell viability, induced apoptosis, and reduced survivin gene expression in treated EPG and RDB cells (with the significant IC50 values of 387 and 575 µg/ml after 72 and 48 hr for EPG and RDB cells respectively). However, we observed SBS was more efficient to induce apoptosis in EPG than RDB cells. We strongly suggest SBS be considered as a prospective anticancer agent or in formulation of complementary medication to treat and prevent gastric cancers.

19.
PLoS One ; 15(3): e0230780, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32214349

RESUMEN

Calprotectin is a heterodimeric protein complex with two subunits called S100A8/A9. The protein has an essential role in inflammation process and various human diseases. It has the ability to bind to unsaturated fatty acids including Arachidonic acid, Oleic acid and etc., which could be considered as a major carrier for fatty acids. In this study we aimed to appraise the thermodynamics and structural changes of Calprotectin in presence of Arachidonic acid/Oleic acid) using docking and molecular dynami simulation method. To create the best conformation of Calprotectin-Oleic acid/Arachidonic acid complexes, the docking process was performed. The complexes with the best binding energy were selected as the models for molecular dynamics simulation process. Furthermore, the structural and thermodynamics properties of the complexes were evaluated too. The Root Mean Square Deviation and Root Mean Square Fluctuation results showed that the binding of Arachidonic acid/Oleic acid to Calprotectin can cause the protein structural changes which was confirmed by Define Secondary Structure of Proteins results. Accordingly, the binding free energy results verified that binding of Oleic acid to Calprotectin leads to instability of S100A8/A9 subunits in the protein. Moreover, the electrostatic energy contribution of the complexes (Calprotectin-Oleic acid/Arachidonic acid) was remarkably higher than van der Waals energy. Thus, the outcome of this study confirm that Oleic acid has a stronger interaction with Calprotectin in comparison with Arachidonic acid. Our findings indicated that binding of unsaturated fatty acids to Calprotectin leads to structural changes of the S100A8/A9 subunits which could be beneficial to play a biological role in inflammation process.


Asunto(s)
Ácido Araquidónico/farmacología , Complejo de Antígeno L1 de Leucocito/química , Complejo de Antígeno L1 de Leucocito/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Ácidos Oléicos/farmacología , Ácido Araquidónico/metabolismo , Enlace de Hidrógeno , Ácidos Oléicos/metabolismo , Conformación Proteica/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos
20.
Biomed Rep ; 12(3): 125-133, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32042421

RESUMEN

The interaction between human serum albumin (HSA) and arachidonic acid (AA) as an unsaturated fatty acid were investigated in the present study using methods including UV-VIS spectrophotometry, fluorescence and circular dichroism (CD) spectroscopy, lifetime measurements, fluorescence anisotropy measurements and visual molecular dynamics (MD). The thermodynamic parameters were assessed from HSA thermal and chemical denaturation in the presence and absence of AA. From the thermal denaturation, the Tm and ΔG˚(298K) magnitudes obtained were 327.7 K and 88 kJ/mol, respectively, for HSA alone, and 323.4 K and 85 kJ/mol, respectively, following treatment with a 10 µM AA concentration. The same manner of reduction in Gibbs free energy as a criterion of protein stability was achieved during chemical denaturation by urea in the presence of AA. The present study investigates HSA binding nature through MD approaches, and the results indicated that the binding affinity of AA to the subdomain IIA of HSA is greater compared with that of subdomain IIIA. Although the HSA regular secondary structure evaluation by CD exhibited a minor change following incubation with AA, its tertiary structure revealed an observable fluctuation. Thus, it appears that the interaction between AA and HSA requires minor instability and partial structural changes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA