Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Hum Mol Genet ; 23(4): 843-54, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24064337

RESUMEN

Gaucher disease has recently received wide attention due to the unexpected discovery that it is a genetic risk factor for Parkinson's disease. Gaucher disease is caused by the defective activity of the lysosomal enzyme, glucocerebrosidase (GCase; GBA1), resulting in intracellular accumulation of the glycosphingolipids, glucosylceramide and psychosine. The rare neuronopathic forms of GD (nGD) are characterized by profound neurological impairment and neuronal cell death. We have previously described the progression of neuropathological changes in a mouse model of nGD. We now examine the relationship between glycosphingolipid accumulation and initiation of pathology at two pre-symptomatic stages of the disease in four different brain areas which display differential degrees of susceptibility to GCase deficiency. Liquid chromatography electrospray ionization tandem mass spectrometry demonstrated glucosylceramide and psychosine accumulation in nGD brains prior to the appearance of neuroinflammation, although only glucosylceramide accumulation correlated with neuroinflammation and neuron loss. Levels of other sphingolipids, including the pro-apoptotic lipid, ceramide, were mostly unaltered. Transmission electron microscopy revealed that glucosylceramide accumulation occurs in neurons, mostly in the form of membrane-delimited pseudo-tubules located near the nucleus. Highly disrupted glucosylceramide-storing cells, which are likely degenerating neurons containing massive inclusions, numerous autophagosomes and unique ultrastructural features, were also observed. Together, our results indicate that a certain level of neuronal glucosylceramide storage is required to trigger neuropathological changes in affected brain areas, while other brain areas containing similar glucosylceramide levels are unaltered, presumably because of intrinsic differences in neuronal properties, or in the neuronal environment, between various brain regions.


Asunto(s)
Enfermedad de Gaucher/metabolismo , Glucosilceramidas/metabolismo , Degeneración Nerviosa/metabolismo , Neuronas/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Enfermedad de Gaucher/patología , Glucosilceramidasa/deficiencia , Glucosilceramidasa/genética , Humanos , Lactosilceramidos/metabolismo , Ratones , Ratones Noqueados , Neuronas/patología , Psicosina/metabolismo , Esfingomielinas/metabolismo
2.
J Neuroinflammation ; 13(1): 104, 2016 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-27175482

RESUMEN

BACKGROUND: Neuroinflammation is a key phenomenon in the pathogenesis of many neurodegenerative diseases. Understanding the mechanisms by which brain inflammation is engaged and delineating the key players in the immune response and their contribution to brain pathology is of great importance for the identification of novel therapeutic targets for these devastating diseases. Gaucher disease, the most common lysosomal storage disease, is caused by mutations in the GBA1 gene and is a significant risk factor for Parkinson's disease; in some forms of Gaucher disease, neuroinflammation is observed. METHODS: An unbiased gene profile analysis was performed on a severely affected brain area of a neurological form of a Gaucher disease mouse at a pre-symptomatic stage; the mouse used for this study, the Gba (flox/flox); nestin-Cre mouse, was engineered such that GBA1 deficiency is restricted to cells of neuronal lineage, i.e., neurons and macroglia. RESULTS: The 10 most up-regulated genes in the ventral posteromedial/posterolateral region of the thalamus were inflammatory genes, with the gene expression signature significantly enriched in interferon signaling genes. Interferon ß levels were elevated in neurons, and interferon-stimulated genes were elevated mainly in microglia. Interferon signaling pathways were elevated to a small extent in the brain of another lysosomal storage disease mouse model, Krabbe disease, but not in Niemann-Pick C or Sandhoff mouse brain. Ablation of the type I interferon receptor attenuated neuroinflammation but had no effect on GD mouse viability. CONCLUSIONS: Our results imply that the type I interferon response is involved in the development of nGD pathology, and possibly in other lysosomal storage diseases in which simple glycosphingolipids accumulate, and support the notion that interferon signaling pathways play a vital role in the sterile inflammation that often occurs during chronic neurodegenerative diseases in which neuroinflammation is present.


Asunto(s)
Encéfalo/metabolismo , Encéfalo/patología , Enfermedad de Gaucher , Interferón Tipo I/metabolismo , Neuronas/metabolismo , Regulación hacia Arriba/genética , Animales , Receptor 1 de Quimiocinas CX3C , Encefalitis/etiología , Encefalitis/metabolismo , Encefalitis/patología , Enfermedad de Gaucher/complicaciones , Enfermedad de Gaucher/genética , Enfermedad de Gaucher/metabolismo , Perfilación de la Expresión Génica , Glucosilceramidasa/deficiencia , Glucosilceramidasa/genética , Glicoesfingolípidos/metabolismo , Humanos , Recién Nacido , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/metabolismo , Nestina/genética , Nestina/metabolismo , Neuronas/patología , Receptor de Interferón alfa y beta/deficiencia , Receptor de Interferón alfa y beta/genética , Receptores de Quimiocina/genética , Receptores de Quimiocina/metabolismo , Transducción de Señal/genética
3.
Hum Mol Genet ; 20(7): 1375-86, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21252206

RESUMEN

Gaucher disease (GD), the most common lysosomal storage disorder, is caused by a deficiency in the lysosomal enzyme glucocerebrosidase (GlcCerase), which results in intracellular accumulation of glucosylceramide (GlcCer). The rare neuronopathic forms of GD are characterized by profound neurological impairment and neuronal cell death, but little is known about the neuropathological changes that underlie these events. We now systematically examine the onset and progression of various neuropathological changes (including microglial activation, astrogliosis and neuron loss) in a mouse model of neuronopathic GD, and document the brain areas that are first affected, which may reflect vulnerability of these areas to GlcCerase deficiency. We also identify neuropathological changes in several brain areas and pathways, such as the substantia nigra reticulata, reticulotegmental nucleus of the pons, cochlear nucleus and the somatosensory system, which could be responsible for some of the neurological manifestations of the human disease. In addition, we establish that microglial activation and astrogliosis are spatially and temporally correlated with selective neuron loss.


Asunto(s)
Encéfalo/patología , Encéfalo/fisiopatología , Modelos Animales de Enfermedad , Enfermedad de Gaucher/patología , Enfermedad de Gaucher/fisiopatología , Inflamación/fisiopatología , Neuronas/patología , Animales , Encéfalo/enzimología , Muerte Celular , Enfermedad de Gaucher/enzimología , Enfermedad de Gaucher/genética , Glucosilceramidasa/genética , Glucosilceramidasa/metabolismo , Humanos , Inflamación/enzimología , Inflamación/genética , Inflamación/patología , Ratones , Ratones Mutantes , Neuronas/enzimología
4.
Brain ; 135(Pt 6): 1724-35, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22566609

RESUMEN

Gaucher's disease, the most common lysosomal storage disorder, is caused by the defective activity of glucocerebrosidase, the lysosomal hydrolase that degrades glucosylceramide. The neuronopathic forms of Gaucher's disease are characterized by severe neuronal loss, astrocytosis and microglial proliferation, but the cellular and molecular pathways causing these changes are not known. In the current study, we delineate the role of neuroinflammation in the pathogenesis of neuronopathic Gaucher's disease and show significant changes in levels of inflammatory mediators in the brain of a neuronopathic Gaucher's disease mouse model. Levels of messenger RNA expression of interleukin -1ß, tumour necrosis factor-α, tumour necrosis factor-α receptor, macrophage colony-stimulating factor and transforming growth factor-ß were elevated by up to ∼30-fold, with the time-course of the increase correlating with the progression of disease severity. The most significant elevation was detected for the chemokines CCL2, CCL3 and CCL5. Blood-brain barrier disruption was also evident in mice with neuronopathic Gaucher's disease. Finally, extensive elevation of nitrotyrosine, a hallmark of peroxynitrite (ONOO(-)) formation, was observed, consistent with oxidative damage caused by macrophage/microglia activation. Together, our results suggest a cytotoxic role for activated microglia in neuronopathic Gaucher's disease. We suggest that once a critical threshold of glucosylceramide storage is reached in neurons, a signalling cascade is triggered that activates microglia, which in turn releases inflammatory cytokines that amplify the inflammatory response, contributing to neuronal death.


Asunto(s)
Encefalitis/etiología , Enfermedad de Gaucher/complicaciones , Neuronas/patología , Animales , Animales Recién Nacidos , Antiinflamatorios no Esteroideos/uso terapéutico , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Barrera Hematoencefálica/fisiopatología , Proteínas de Unión al Calcio/metabolismo , Muerte Celular/efectos de los fármacos , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Encefalitis/diagnóstico , Encefalitis/tratamiento farmacológico , Encefalitis/patología , Células Endoteliales/patología , Ensayo de Inmunoadsorción Enzimática/métodos , Enfermedad de Gaucher/tratamiento farmacológico , Enfermedad de Gaucher/genética , Regulación del Desarrollo de la Expresión Génica/genética , Glucosilceramidasa/deficiencia , Ibuprofeno/uso terapéutico , Inmunoglobulina G/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Proteínas de Filamentos Intermediarios/genética , Imagen por Resonancia Magnética , Ratones , Ratones Transgénicos , Proteínas de Microfilamentos/metabolismo , Microglía/patología , Proteínas del Tejido Nervioso/genética , Nestina , Neuronas/efectos de los fármacos , TATA Box , Tirosina/análogos & derivados , Tirosina/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo
5.
Hum Mol Genet ; 19(18): 3583-90, 2010 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-20616152

RESUMEN

The neuronopathic forms of the human inherited metabolic disorder, Gaucher disease (GD), are characterized by severe neuronal loss, astrogliosis and microglial proliferation, but the cellular and molecular pathways causing these changes are not known. Recently, a mouse model of neuronopathic GD was generated in which glucocerebrosidase deficiency is limited to neural and glial progenitor cells. We now show significant changes in the levels and in the distribution of cathepsins in the brain of this mouse model. Cathepsin mRNA expression was significantly elevated by up to approximately 10-fold, with the time-course of the increase correlating with the progression of disease severity. Cathepsin activity and protein levels were also elevated. Significant changes in cathepsin D distribution in the brain were detected, with cathepsin D elevated in areas where neuronal loss, astrogliosis and microgliosis were observed, such as in layer V of the cerebral cortex, the lateral globus pallidus and in various nuclei in the thalamus, brain regions known to be affected in the disease. Cathepsin D elevation was greatest in microglia and also noticeable in astrocytes. The distribution of cathepsin D was altered in neurons in a manner consistent with its release from the lysosome to the cytosol. Remarkably, ibubrofen treatment significantly reduced cathepsin D mRNA levels in the cortex of Gaucher mice. Finally, cathepsin levels were also altered in mouse models of a number of other sphingolipidoses. Our findings suggest the involvement of cathepsins in the neuropathology of neuronal forms of GD and of other lysosomal storage diseases, and are consistent with a crucial role for reactive microglia in neuronal degeneration in these diseases.


Asunto(s)
Catepsinas/genética , Catepsinas/metabolismo , Enfermedad de Gaucher/metabolismo , Expresión Génica , Esfingolipidosis/genética , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Femenino , Enfermedad de Gaucher/genética , Humanos , Masculino , Ratones , Ratones Noqueados , Neuronas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte de Proteínas , Esfingolipidosis/metabolismo
6.
Hum Mol Genet ; 18(8): 1482-8, 2009 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-19193629

RESUMEN

Gaucher disease (GD), the most common lysosomal storage disorder (LSD), is caused by defects in the activity of the lysosomal enzyme, glucocerebrosidase, resulting in intracellular accumulation of glucosylceramide (GlcCer). Neuronopathic forms, which comprise only a small percent of GD patients, are characterized by neurological impairment and neuronal cell death. Little is known about the pathways leading from GlcCer accumulation to neuronal death or dysfunction but defective calcium homeostasis appears to be one of the pathways involved. Recently, endoplasmic reticulum stress together with activation of the unfolded protein response (UPR) has been suggested to play a key role in cell death in neuronopathic forms of GD, and moreover, the UPR was proposed to be a common mediator of apoptosis in LSDs (Wei et al. (2008) Hum. Mol. Genet. 17, 469-477). We now systematically examine whether the UPR is activated in neuronal forms of GD using a selection of neuronal disease models and a combination of western blotting and semi-quantitative and quantitative real-time polymerase chain reaction. We do not find any changes in either protein or mRNA levels of a number of typical UPR markers including BiP, CHOP, XBP1, Herp and GRP58, in either cultured Gaucher neurons or astrocytes, or in brain regions from mouse models, even at late symptomatic stages. We conclude that the proposition that the UPR is a common mediator for apoptosis in all neurodegenerative LSDs needs to be re-evaluated.


Asunto(s)
Enfermedad de Gaucher/metabolismo , Pliegue de Proteína , Animales , Apoptosis , Astrocitos/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Células Cultivadas , Humanos , Ratones , Neuronas/metabolismo , Ratas
7.
Autophagy ; 17(7): 1796-1798, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34085599

RESUMEN

Efficient degradation of autophagic vacuoles (AVs) generated at axon terminals by mature lysosomes enriched in the cell body represents an exceptional challenge that neurons face in maintaining cellular homeostasis. Here, we discuss our recent findings revealing a lipid-mediated impairment of lysosome transport to distal axons contributing to axonal AV accumulation in the neurodegenerative lysosomal storage disorder Niemann-Pick disease type C (NPC). Using transmission electron microscopy, we observed a striking buildup of endocytic and autophagic organelles in NPC dystrophic axons, indicating defects in the clearance of organelles destined for lysosomal degradation. We further revealed that elevated cholesterol on NPC lysosome membranes abnormally sequesters motor-adaptors of axonal lysosome delivery, resulting in impaired anterograde lysosome transport into distal axons that disrupts maturation of axonal AVs during their retrograde transport route. Together, our study demonstrates a mechanism by which altered membrane lipid composition compromises axonal lysosome trafficking and positioning and shows that lowering lysosomal lipid levels rescues lysosome transport into NPC axons, thus reducing axonal autophagic stress at early stages of NPC disease.


Asunto(s)
Autofagia , Lisosomas , Autofagosomas/metabolismo , Transporte Axonal , Lípidos , Lisosomas/metabolismo
8.
Dev Cell ; 56(10): 1452-1468.e8, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33878344

RESUMEN

Niemann-Pick disease type C (NPC) is a neurodegenerative lysosomal storage disorder characterized by lipid accumulation in endolysosomes. An early pathologic hallmark is axonal dystrophy occurring at presymptomatic stages in NPC mice. However, the mechanisms underlying this pathologic change remain obscure. Here, we demonstrate that endocytic-autophagic organelles accumulate in NPC dystrophic axons. Using super-resolution and live-neuron imaging, we reveal that elevated cholesterol on NPC lysosome membranes sequesters kinesin-1 and Arl8 independent of SKIP and Arl8-GTPase activity, resulting in impaired lysosome transport into axons, contributing to axonal autophagosome accumulation. Pharmacologic reduction of lysosomal membrane cholesterol with 2-hydroxypropyl-ß-cyclodextrin (HPCD) or elevated Arl8b expression rescues lysosome transport, thereby reducing axonal autophagic stress and neuron death in NPC. These findings demonstrate a pathological mechanism by which altered membrane lipid composition impairs lysosome delivery into axons and provide biological insights into the translational application of HPCD in restoring axonal homeostasis at early stages of NPC disease.


Asunto(s)
Autofagia , Axones/metabolismo , Lípidos/química , Lisosomas/metabolismo , Distrofias Musculares/patología , Enfermedad de Niemann-Pick Tipo C/patología , Estrés Fisiológico , Animales , Autofagosomas/metabolismo , Autofagosomas/ultraestructura , Transporte Biológico , Muerte Celular , Colesterol/metabolismo , Vesículas Citoplasmáticas/metabolismo , Vesículas Citoplasmáticas/ultraestructura , GTP Fosfohidrolasas/metabolismo , Membranas Intracelulares/metabolismo , Cinesinas/metabolismo , Ratones Endogámicos BALB C , Distrofias Musculares/complicaciones , Proteína Niemann-Pick C1/deficiencia , Proteína Niemann-Pick C1/metabolismo , Enfermedad de Niemann-Pick Tipo C/complicaciones
9.
Autophagy ; 16(1): 167-168, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31533518

RESUMEN

Lysosomal degradation of protein aggregates and damaged organelles is essential for maintaining cellular homeostasis. This process in neurons is challenging due to their highly polarized architecture. While enzymatically active degradative lysosomes are enriched in the cell body, their trafficking and degradation capacity in axons remain elusive. We recently characterized the axonal delivery of degradative lysosomes by applying a set of fluorescent probes that selectively label active forms of lysosomal hydrolases on cortical neurons in microfluidic devices. We revealed that soma-derived degradative lysosomes rapidly influx into distal axons and target to autophagosomes and Parkinson disease-related SNCA/α-synuclein cargos for local degradation. Disrupting axon-targeted delivery of degradative lysosomes induces axonal autophagic stress. We demonstrate that the axon is an active compartment for local degradation, establishing a foundation for future investigations into axonal lysosome trafficking and functionality in neurodegenerative diseases and lysosomal storage disorders associated with axonal pathology and macroautophagy/autophagy stress.


Asunto(s)
Autofagia/fisiología , Axones/metabolismo , Homeostasis/fisiología , Lisosomas/metabolismo , Animales , Cuerpo Celular/metabolismo , Humanos , Neuronas/metabolismo
10.
Trends Neurosci ; 42(9): 631-643, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31288942

RESUMEN

Homozygous and heterozygous mutations in GBA1, the gene implicated in Gaucher disease, increase the risk and severity of Parkinson disease (PD). We evaluated the design, phenotype, strengths, and limitations of current GBA1-associated PD mouse models. Although faithful modeling of a genetic risk factor poses many challenges, the different approaches taken were successful in revealing predisposing abnormalities in heterozygotes for GBA1 mutations and demonstrating the deleterious effects of GBA1 impairment on the PD course in PD models. GBA1-PD models differ in key parameters, with no single model recapitulating all aspects of the GBA1-PD puzzle, emphasizing the importance of selecting the proper in vivo model depending on the specific molecular mechanism or potential therapy being studied.


Asunto(s)
Glucosilceramidasa/genética , Mutación/genética , Enfermedad de Parkinson/genética , alfa-Sinucleína/genética , Animales , Modelos Animales de Enfermedad , Enfermedad de Gaucher/genética , Humanos
11.
Cell Rep ; 28(1): 51-64.e4, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31269450

RESUMEN

Neurons face the challenge of maintaining cellular homeostasis through lysosomal degradation. While enzymatically active degradative lysosomes are enriched in the soma, their axonal trafficking and positioning and impact on axonal physiology remain elusive. Here, we characterized axon-targeted delivery of degradative lysosomes by applying fluorescent probes that selectively label active forms of lysosomal cathepsins D, B, L, and GCase. By time-lapse imaging of cortical neurons in microfluidic devices and standard dishes, we reveal that soma-derived degradative lysosomes rapidly influx into distal axons and target to autophagosomes and Parkinson disease-related α-synuclein cargos for local degradation. Impairing lysosome axonal delivery induces an aberrant accumulation of autophagosomes and α-synuclein cargos in distal axons. Our study demonstrates that the axon is an active compartment for local degradation and reveals fundamental aspects of axonal lysosomal delivery and maintenance. Our work establishes a foundation for investigations into axonal lysosome trafficking and functionality in neurodegenerative diseases.


Asunto(s)
Autofagosomas/enzimología , Transporte Axonal/genética , Axones/metabolismo , Lisosomas/enzimología , Lisosomas/metabolismo , Factores de Ribosilacion-ADP/genética , Factores de Ribosilacion-ADP/metabolismo , Animales , Autofagosomas/metabolismo , Autofagia/genética , Autofagia/fisiología , Transporte Axonal/fisiología , Axones/enzimología , Catepsinas/antagonistas & inhibidores , Catepsinas/metabolismo , Femenino , Ganglios Espinales/enzimología , Ganglios Espinales/metabolismo , Glucosilceramidasa/antagonistas & inhibidores , Glucosilceramidasa/metabolismo , Células HEK293 , Homeostasis/genética , Homeostasis/fisiología , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Neuronas/enzimología , Neuronas/metabolismo , Transporte de Proteínas/genética , Transporte de Proteínas/fisiología , alfa-Sinucleína/metabolismo
12.
J Cell Biol ; 217(9): 3127-3139, 2018 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-29695488

RESUMEN

Despite widespread distribution of LAMP1 and the heterogeneous nature of LAMP1-labeled compartments, LAMP1 is routinely used as a lysosomal marker, and LAMP1-positive organelles are often referred to as lysosomes. In this study, we use immunoelectron microscopy and confocal imaging to provide quantitative analysis of LAMP1 distribution in various autophagic and endolysosomal organelles in neurons. Our study demonstrates that a significant portion of LAMP1-labeled organelles do not contain detectable lysosomal hydrolases including cathepsins D and B and glucocerebrosidase. A bovine serum albumin-gold pulse-chase assay followed by ultrastructural analysis suggests a heterogeneity of degradative capacity in LAMP1-labeled endolysosomal organelles. Gradient fractionation displays differential distribution patterns of LAMP1/2 and cathepsins D/B in neurons. We further reveal that LAMP1 intensity in familial amyotrophic lateral sclerosis-linked motor neurons does not necessarily reflect lysosomal deficits in vivo. Our study suggests that labeling a set of lysosomal hydrolases combined with various endolysosomal markers would be more accurate than simply relying on LAMP1/2 staining to assess neuronal lysosome distribution, trafficking, and functionality under physiological and pathological conditions.


Asunto(s)
Catepsina B/metabolismo , Catepsina D/metabolismo , Proteínas de Membrana de los Lisosomas/metabolismo , Lisosomas/metabolismo , Neuronas Motoras/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Células Cultivadas , Glucosilceramidasa/metabolismo , Proteínas de Membrana de los Lisosomas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Transporte de Proteínas/fisiología , Interferencia de ARN , ARN Interferente Pequeño/genética , Ratas , Ratas Sprague-Dawley , Coloración y Etiquetado
13.
Autophagy ; 14(8): 1472-1474, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29940787

RESUMEN

Lysosomes serve as the degradation hubs for macroautophagic/autophagic and endocytic components, thus maintaining cellular homeostasis essential for neuronal survival and function. LAMP1 (lysosomal associated membrane protein 1) and LAMP2 are distributed among autophagic and endolysosomal organelles. Despite widespread distribution, LAMP1 is routinely used as a lysosome marker and LAMP1-positive organelles are often referred to as lysosomal compartments. By applying immuno-electron microscopy (iTEM) and confocal imaging combined with Airyscan microscopy, we expand on the limited literature to provide a comprehensive and quantitative analysis of LAMP1 distribution in various autophagic and endolysosomal organelles in neurons. Our study demonstrates that a significant portion of LAMP1-labeled organelles lack major lysosomal hydrolases. BSA-gold pulse-chase assay further shows heterogeneous degradative capacities of LAMP1-labled organelles. In addition, LAMP1 intensity is not a sensitive readout to assess lysosomal deficits in familial amyotrophic lateral sclerosis-linked motor neurons in vivo. Our study thus calls for caution when interpreting LAMP1-labeled organelles in the nervous system where LAMP1 intensity, trafficking, and distribution do not necessarily represent degradative lysosomes or autolysosomes under physiological and pathological conditions. ABBREVIATIONS: ALS: amyotrophic lateral sclerosis; BSA: bovine serum albumin; DRG: dorsal root ganglion; IGF2R/CI-M6PR: insulin like growth factor 2 receptor; iTEM: immuno-transmission electron microscopy; LAMP1/2: lysosomal associated membrane protein 1/2; P80: postnatal day 80; sMNs: spinal motor neurons.


Asunto(s)
Esclerosis Amiotrófica Lateral , Autofagia , Endosomas , Humanos , Proteína 1 de la Membrana Asociada a los Lisosomas , Proteínas de Membrana de los Lisosomas , Lisosomas
14.
FEBS Lett ; 591(5): 774-783, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28186340

RESUMEN

In the lysosomal storage disorder Gaucher disease (GD), glucosylceramide (GlcCer) accumulates due to the defective activity of glucocerebrosidase. A subset of GD patients develops neuropathology. We now show mislocalization of Limp2-positive puncta and a large reduction in the number of Lamp1-positive puncta, which are associated with impaired tubulin. These changes occur at an early stage in animal models of GD, prior to development of overt symptoms and considerably earlier than neuronal loss. Altered lysosomal localization and cytoskeleton disruption precede the neuroinflammatory pathways, axonal dystrophy and neuronal loss previously characterized in neuronal forms of GD.


Asunto(s)
Enfermedad de Gaucher/metabolismo , Enfermedad de Gaucher/patología , Glucosilceramidas/metabolismo , Lisosomas/metabolismo , Neuronas/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestructura , Animales , Antígenos CD36/genética , Antígenos CD36/metabolismo , Muerte Celular , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Modelos Animales de Enfermedad , Enfermedad de Gaucher/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Glucosilceramidasa/deficiencia , Glucosilceramidasa/genética , Humanos , Proteínas de Membrana de los Lisosomas/genética , Proteínas de Membrana de los Lisosomas/metabolismo , Lisosomas/ultraestructura , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Neuronas/ultraestructura , Cultivo Primario de Células , Factores de Tiempo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
15.
Nat Med ; 20(2): 204-8, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24441827

RESUMEN

Gaucher's disease (GD), an inherited metabolic disorder caused by mutations in the glucocerebrosidase gene (GBA), is the most common lysosomal storage disease. Heterozygous mutations in GBA are a major risk factor for Parkinson's disease. GD is divided into three clinical subtypes based on the absence (type 1) or presence (types 2 and 3) of neurological signs. Type 1 GD was the first lysosomal storage disease (LSD) for which enzyme therapy became available, and although infusions of recombinant glucocerebrosidase (GCase) ameliorate the systemic effects of GD, the lack of efficacy for the neurological manifestations, along with the considerable expense and inconvenience of enzyme therapy for patients, renders the search for alternative or complementary therapies paramount. Glucosylceramide and glucosylsphingosine accumulation in the brain leads to massive neuronal loss in patients with neuronopathic GD (nGD) and in nGD mouse models. However, the mode of neuronal death is not known. Here, we show that modulating the receptor-interacting protein kinase-3 (Ripk3) pathway markedly improves neurological and systemic disease in a mouse model of GD. Notably, Ripk3 deficiency substantially improved the clinical course of GD mice, with increased survival and motor coordination and salutary effects on cerebral as well as hepatic injury.


Asunto(s)
Encéfalo/patología , Muerte Celular/fisiología , Enfermedad de Gaucher/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Animales , Western Blotting , Fluoresceínas , Enfermedad de Gaucher/metabolismo , Enfermedad de Gaucher/patología , Hígado/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Destreza Motora/fisiología , Proteína Serina-Treonina Quinasas de Interacción con Receptores/deficiencia
16.
Dis Model Mech ; 4(6): 746-52, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21954067

RESUMEN

Gaucher disease (GD), the most common lysosomal storage disorder (LSD), is caused by the defective activity of the lysosomal hydrolase glucocerebrosidase, which is encoded by the GBA gene. Generation of animal models that faithfully recapitulate the three clinical subtypes of GD has proved to be more of a challenge than first anticipated. The first mouse to be produced died within hours after birth owing to skin permeability problems, and mice with point mutations in Gba did not display symptoms correlating with human disease and also died soon after birth. Recently, conditional knockout mice that mimic some features of the human disease have become available. Here, we review the contribution of all currently available animal models to examining pathological pathways underlying GD and to testing the efficacy of new treatment modalities, and propose a number of criteria for the generation of more appropriate animal models of GD.


Asunto(s)
Investigación Biomédica , Modelos Animales de Enfermedad , Enfermedad de Gaucher/patología , Animales , Enfermedad de Gaucher/genética , Humanos , Enfermedad de Parkinson/patología , Mutación Puntual/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA