Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Bioorg Chem ; 146: 107284, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38493640

RESUMEN

Based on the well-established pharmacophoric features required for histone deacetylase (HDAC) inhibition, a novel series of easy-to-synthesize benzimidazole-linked (thio)hydantoin derivatives was designed and synthesized as HDAC6 inhibitors. All target compounds potently inhibited HDAC6 at nanomolar levels with compounds 2c, 2d, 4b and 4c (IC50s = 51.84-74.36 nM) being more potent than SAHA reference drug (IC50 = 91.73 nM). Additionally, the most potent derivatives were further assessed for their in vitro cytotoxic activity against two human leukemia cells. Hydantoin derivative 4c was equipotent/superior to SAHA against MOLT-4/CCRF-CEM leukemia cells, respectively and demonstrated safety profile better than that of SAHA against non-cancerous human cells. 4c was also screened against different HDAC isoforms. 4c was superior to SAHA against HDAC1. Cell-based assessment of 4c revealed a significant cell cycle arrest and apoptosis induction. Moreover, western blotting analysis showed increased levels of acetylated histone H3, histone H4 and α-tubulin in CCRF-CEM cells. Furthermore, docking study exposed the ability of title compounds to chelate Zn2+ located within HDAC6 active site. As well, in-silico evaluation of physicochemical properties showed that target compounds are promising candidates in terms of pharmacokinetic aspects.


Asunto(s)
Antineoplásicos , Hidantoínas , Leucemia , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/química , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Hidantoínas/farmacología , Leucemia/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Zinc/metabolismo , Bencimidazoles/química , Bencimidazoles/farmacología
2.
Bioorg Chem ; 150: 107497, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38852311

RESUMEN

New derivatives of tropane scaffold were prepared from the reaction of their thione or thioamide derivatives with α-halocarbonyl compounds. The structures of all new derivatives were assured and proved with their spectral data. The novel tropane derivatives were examined for their cytotoxicity on two colon tumor cell lines; Caco2 and HCT116 cells. The most active compounds 3, 4, 5, 9d and 14a displayed significant antitumor activities with IC50 range of 9.50 - 30.15 µM compared to doxorubicin. Moreover, they revealed reduced cytotoxic effect on WI-38 normal ones, signifying their great safety. With the aim of better understanding the inhibitory potential of such compounds on heat-shock protein 90 (Hsp90), there activities were assessed against such enzyme demonstrating high inhibitory activities with IC50 range of 56.58-78.85 nM. Western blotting was carried out to ensure the inhibitory activity on Hsp90, results showed that 3 markedly suppressed Hsp90 expression on Caco2 cell line. Additionally, a molecular docking analysis of the most potent derivatives at the Hsp90 binding site was carried out in order to approve the performed in vitro assays.


Asunto(s)
Antineoplásicos , Neoplasias del Colon , Ensayos de Selección de Medicamentos Antitumorales , Proteínas HSP90 de Choque Térmico , Simulación del Acoplamiento Molecular , Tropanos , Humanos , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Neoplasias del Colon/metabolismo , Relación Dosis-Respuesta a Droga , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/metabolismo , Estructura Molecular , Relación Estructura-Actividad , Tropanos/farmacología , Tropanos/química , Tropanos/síntesis química , Hidrocarburos Halogenados/química , Hidrocarburos Halogenados/farmacología
3.
Arch Pharm (Weinheim) ; 357(1): e2300201, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37937360

RESUMEN

Dementia is a cognitive disturbance that is generally correlated with central nervous system diseases, especially Alzheimer's disease. The limited number of medications available is insufficient to improve the lifestyle of the patients suffering from this disease. Thus, new benzimidazole-thiazole hybrids (3-10) were designed and synthesized as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory agents. The in vitro evaluation displayed that the derivatives 4b, 4d, 5b, 6a, 7a, and 8b demonstrated dual inhibitory efficiency against both AChE with IC50 ranging from 4.55 to 8.62 µM and BChE with IC50 ranging from 3.50 to 8.32 µM. By analyzing the Lineweaver-Burk plot, an uncompetitive form of inhibition was determined for the highly active compound 4d, revealing its inhibition type. The human telomerase reverse transcriptase-immortalized retinal pigment epithelial cell line was used to ensure the safety of the most potent cholinesterase inhibitors. Furthermore, compounds 4b, 4d, 5b, 6a, 7a, and 8b were evaluated for their neuroprotective and antioxidant properties, as well as their ability to suppress COX-2. The results demonstrated that compounds 4d, 5b, and 8b presented significant neuroprotection efficiency against H2 O2 -induced damage in SH-SY5Y cells with % cell viability of 67.42 ± 7.90%, 62.51 ± 6.71%, and 72.61 ± 8.10%, respectively, while the tested candidates did not reveal significant antioxidant activity. Otherwise, compounds 4b, 6a, 7a, and 8b displayed outstanding COX-2 inhibition effects with IC50 ranging from 0.050 to 0.080 µM relative to celecoxib (IC50 = 0.050 µM). In addition, molecular docking was carried out for the potent benzimidazole-thiazole hybrids with the active sites of both AChE (PDB ID: 4EY7) and BChE (PDB code: 1P0P). The tested candidates fit well in the active sites of both portions, with docking scores ranging from -8.65 to -6.64 kcal/mol (for AChE) and -8.71 to -7.73 kcal/mol (for BChE). In silico results show that the synthesized benzimidazole-thiazole hybrids have good physicochemical and pharmacokinetic properties with no Lipinski rule violations. The preceding results exhibited that compound 4d could be used as a new template for developing more significant cholinesterase inhibitors in the future.


Asunto(s)
Enfermedad de Alzheimer , Neuroblastoma , Humanos , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Butirilcolinesterasa/metabolismo , Acetilcolinesterasa/metabolismo , Simulación del Acoplamiento Molecular , Tiazoles/farmacología , Ciclooxigenasa 2/metabolismo , Relación Estructura-Actividad , Enfermedad de Alzheimer/tratamiento farmacológico , Antioxidantes/farmacología , Bencimidazoles/farmacología , Estructura Molecular
4.
Bioorg Chem ; 137: 106585, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37163813

RESUMEN

Multidrug-resistant microorganisms have become a global health problem, prompting research into new antimicrobials. Drug repurposing is a new technique in drug discovery used to improve drug development success. As a well-studied medication with a sulfonamide moiety, furosemide was chosen to study its antimicrobial effect on different microbial strains. In addition, a new family of furosemide analogs was investigated for their antimicrobial efficacy. According to the obtained results, the majority of the examined molecules exhibited potential antimicrobial activity. Compounds 3b and 4a had the best anti-MRSA results, with an MIC = 7.81 µg/mL. They also demonstrated potent anti-gram-negative activity against E. coli (MIC = 1.95 µg/mL and 3.91 µg/mL, respectively). A time-killing kinetics study against E. coli and MRSA showed bactericidal actions of 3b and 4a within 120-150 min. Moreover, an anti-PBP activity and an in vitro cytotoxicity evaluation were performed. Furosemide decreased the PBP2a levels in MRSA by 21.5% compared to the control. However, the furosemide analogs 3b and 4a demonstrated superior anti-PBP activity (55.9 and 57.1 % reduction in the expression of PBP2a, respectively). In addition, compound 4a was nearly nontoxic to normal WI-38 cells (IC50 = 248.60 µg /mL) indicating its high safety profile. Finally, the ability of furosemide and compounds 3b and 4a to bind to the target PBP2a enzyme has also been supported by molecular docking research.


Asunto(s)
Antiinfecciosos , Staphylococcus aureus Resistente a Meticilina , Simulación del Acoplamiento Molecular , Furosemida/farmacología , Reposicionamiento de Medicamentos , Escherichia coli , Pruebas de Sensibilidad Microbiana , Antiinfecciosos/farmacología , Antibacterianos/farmacología
5.
Bioorg Chem ; 134: 106433, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36842318

RESUMEN

New 6,7-dimethylquinoxalin-2(1H)-one and hydrazineylidene thiazol-4-one derivatives were synthesized, and evaluated for their in vitro antimicrobial activity. The obtained results revealed marked antimicrobial potential against four bacterial, and two fungal strains. Both 6,7-dimethyl-3-(2-(4-nitrophenyl)-2-oxoethyl)quinoxalin-2(1H)-one (4d), and 2-(2-(9H-fluoren-9-ylidene)hydrazineyl)-5-(2-(p-tolyl)hydrazineylidene)thiazol-4(5H)-one (11b) displayed significant antibacterial and antifungal activities having MIC ranges (1.98-15.6 mg/mL) and (1.98-3.9 mg/mL) compared to Tetracycline and Amphotericin B as standard drugs. In addition, they showed noticeable inhibitory activity against DNA gyrase enzyme. Interestingly the thiazole derivative (11b) showed marked inhibitory activity against DNA gyrase with IC50 = 7.82 ± 0.45 µM better than that of ciprofloxacin. The time-kill kinetics profile of the most active compounds against S. aureus and E. coli microorganisms displayed both concentration dependent and time dependent reduction in the number of viable cells. Furthermore, molecular docking study of both compounds in the DNA gyrase binding site was performed, showing agreement with the in vitro inhibitory activities.


Asunto(s)
Girasa de ADN , Tiazoles , Girasa de ADN/metabolismo , Tiazoles/química , Simulación del Acoplamiento Molecular , Staphylococcus aureus/metabolismo , Escherichia coli/metabolismo , Antibacterianos/química , Pruebas de Sensibilidad Microbiana , Inhibidores de Topoisomerasa II , Estructura Molecular
6.
Drug Dev Res ; 84(6): 1127-1141, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37170788

RESUMEN

With the aim of developing cyclin-dependent kinase 2 (CDK2) inhibitors with strong antibreast cancer efficacy, new tricyclic and tetracyclic benzo[6,7]cycloheptane derivatives were synthesized. The newly synthesized tri- and tetracyclic derivatives were achieved from the reaction of 4-(4-morpholin-4-yl-phenyl)-1,3,4,5,6,7-hexahydro-benzo[6,7]cyclohepta[1,2-d]pyrimidine-2-thione (5) with α-haloketone derivatives as hydrazonyl chlorides, phenacyl bromide derivatives, chloroacetone, and ethyl substituted acetate derivatives. The MCF-7 and MDA-MB-231 breast cancer cell lines were utilized to examine the anticancer properties. Compounds 5 and 8 were shown to be the most effective, with half-maximal inhibitory concentration (IC50 ) values between 5.73 and 9.11 µM, which are on the level with doxorubicin. Mechanistic studies showed that 5 and 8 caused tumor cell death by inducing apoptosis and they also produced cancer arrest in the S phase of the cell cycle. In addition, compounds 5 and 8 showed strong anti-CDK2 action (IC50 = 0.112 and 0.18 µM, respectively) comparable to roscovitine (IC50 = 0.127 µM). Moreover, the docking result demonstrated that derivatives 5 and 8 fit into the CDK2 active site in the proper orientation.


Asunto(s)
Antineoplásicos , Estructura Molecular , Antineoplásicos/química , Inhibidores de Proteínas Quinasas/farmacología , Fosforilación , Morfolinas/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Simulación del Acoplamiento Molecular , Proliferación Celular , Relación Estructura-Actividad , Línea Celular Tumoral , Apoptosis
7.
Bioorg Chem ; 121: 105684, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35183860

RESUMEN

New hydrazonoyl-sulfonylthiazoles were designed and synthesized as EGFR inhibitors. The new sulfonylthiazole derivatives were assessed in vitro to measure their effect on EGFR. They revealed marked inhibitory activity against EGFR kinase having IC50 range from 0.037 to 0.317 µM compared to reference drug dasatinib (IC50 = 0.077 µM). Six derivatives of the newly synthesized compounds showed potent inhibitory activity relative to dasatinib. Furthermore, the new hits were examined concerning their cytotoxic effect on human breast cancer cell line (MCF7), hepatic cancer cell line (HepG2) using MTT assay. N-(2-Benzenesulfonyl-1-phenyl-ethylidene)-N'-(4-methyl-thiazol-2-yl)-hydrazine (IC50 = 1.24 µM) revealed higher potency than dasatinib (IC50 = 11.6 µM) against MCF7cell line. Besides, N-(2-benzenesulfonyl-1-phenyl-ethylidene)-N'-(4-methyl-5-p-tolylazo-thiazol-2-yl)-hydrazine exhibited excellent cytotoxicity against HepG2cell line (IC50 = 3.61 µM), exceeding that of dasatinib (IC50 = 14.10 µM). In addition to low cytotoxic effect on normal (WI-38) cells, describing the high safety profiles of these compounds. Moreover, molecular docking was done in order to determine the possible binding modes of such compounds inside the binding site of EGFR.


Asunto(s)
Antineoplásicos , Inhibidores de Proteínas Quinasas , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular , Dasatinib/farmacología , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Receptores ErbB , Humanos , Hidrazonas/farmacología , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad
8.
Bioorg Chem ; 128: 106043, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36058118

RESUMEN

Novel tetracyclic pyrazolo[1,5-a]pyrimidine derivatives; namely benzo[3,4]cyclohepta[1,2-e]pyrazolo[1,5-a]pyrimidin-2-amines 6a-e and benzo[3,4]cyclohepta[1,2-e]pyrazolo[1,5-a]pyrimidin-2(6H)-ones 15a-d, were designed and synthesized as topoisomerase IIα inhibitors with potential anticancer activity. The structure and their mechanistic pathway were discussed and confirmed based on spectral data and DFT calculations. Compounds 6a, 6c, 15b, 15c and 15d exhibited potent Topo II inhibitory activity at one-digit IC50 values (2.35 - 7.18 µM). Among the tested compounds, aminopyrazolopyrimidine derivatives 6a (IC50 = 3.44 µM) and 6c (IC50 = 2.35 µM) were comparable/ equipotent to Doxorubicin (IC50 = 2.71 µM) against Topo II. The most active compounds in Topo II assay were further investigated in vitro for their cytotoxic potential. The oxo-pyrazolopyrimidine derivative 15c; was the most potent possessing one-digit IC50 values (HCT116 IC50 = 2.32 ± 0.13 µM, MCF7 IC50 = 1.137 ± 0.06 µM). Compound 15c was two times more potent than Doxorubicin against MCF7 breast cancer cells. 15c exhibited a safety profile much better than that of Doxorubicin against non-cancerous cells. Compound 15c was also found to be a good apoptotic inducer. Moreover, docking result revealed well-fitting and proper orientation of 15c into Topo II-DNA complex.


Asunto(s)
Antineoplásicos , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular , Relación Dosis-Respuesta a Droga , Doxorrubicina/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Simulación del Acoplamiento Molecular , Estructura Molecular , Pirimidinas/química , Pirimidinas/farmacología , Relación Estructura-Actividad
9.
Arch Pharm (Weinheim) ; 355(7): e2200076, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35393652

RESUMEN

Compounds containing both thiazole and arylsulfone moieties are recognized for their high biological activity and ability to fight a variety of ailments. Thus, in this context, new derivatives of (thiazol-2-yl)hydrazone with an arylsulfone moiety were synthesized as CPTH2 analogs with potent anti-histone lysine acetyl-transferase activity. Compounds 3, 4, 10b, and 11b showed an excellent inhibitory effect on P300 (E1A-associated protein p300), compared to CPTH2. Among all the tested derivatives, compound 10b revealed the highest activity against both P300 and pCAF. In addition, the new hits were tested for anticancer efficacy against two leukemia cell lines. Most of them showed a moderate to potent antitumor effect on the k562 and CCRF-CEM cell lines. Interestingly, the activity of compound 10b against the k562 cell line was found to be higher than that of CPTH2. Furthermore, it showed a good safety profile, better than CPTH2 on normal cells. Molecular docking analysis was carried out to reveal the crucial binding contacts in the inhibition of the P300 and pCAF enzymes.


Asunto(s)
Antineoplásicos , Lisina Acetiltransferasas , Apoptosis , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Histona Acetiltransferasas/metabolismo , Histona Acetiltransferasas/farmacología , Histonas/metabolismo , Histonas/farmacología , Hidrazonas/química , Hidrazonas/farmacología , Lisina/farmacología , Lisina Acetiltransferasas/metabolismo , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad
10.
Bioorg Chem ; 117: 105431, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34688130

RESUMEN

Based on the structural study of previously known CDK2 inhibitors, a new series of pyrazolo[1,5-a]pyrimidine derivatives was designed and synthesized. The target compounds were biologically assessed as potent CDK2 inhibitors and promising anti-leukemia hits. The 7-(4-Bromo-phenyl)-3-(3-chloro/2-chloro-phenylazo)-pyrazolo[1,5-a]pyrimidin-2-ylamines 5 h and 5i revealed the best CDK2 inhibitory activity with comparable potency (IC50 = 22 and 24 nM, respectively) to that of dinaciclib (IC50 = 18 nM). Additionally, both analogues showed potent activities against CDK1, CDK5 and CDK9 at nanomolar concentrations (IC50 = 28-80 nM). The anti-leukemia screening of the target compounds showed strong to moderate cytotoxicity against the used leukemia cell lines (MOLT-4 and HL-60). Compound 5 h inhibited MOLT-4 and HL-60 by 1.4 and 2.3 folds (IC50 = 0.93 and 0.80 µM), respectively, compared to dinaciclib (IC50 = 1.30 and 1.84 µM). Furthermore, compound 5i was comparable to dinaciclib against MOLT-4 and exhibited twice its activity against HL-60. Besides, the cytotoxicity of the promising analogues on normal human blood cells indicated the safety of 5h and 5i as compared to the reference dinaciclib. The pharmacokinetic properties of 5h and 5i were predicted using ADME calculations revealing good oral bioavailability and high GI absorption. The molecular docking simulations indicated, as expected, that the dinaciclib analogues can well-accommodate the CDK2 binding site, forming a variety of interactions.


Asunto(s)
Antineoplásicos/farmacología , Quinasa 2 Dependiente de la Ciclina/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Pirazoles/farmacología , Pirimidinas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Quinasa 2 Dependiente de la Ciclina/metabolismo , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Pirazoles/síntesis química , Pirazoles/química , Pirimidinas/síntesis química , Pirimidinas/química , Relación Estructura-Actividad , Células Tumorales Cultivadas
11.
Molecules ; 26(12)2021 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-34204215

RESUMEN

Recently, the development of nanocatalysts based on naturally occurring polysaccharides has received a lot of attention. Chitosan (CS), as a biodegradable and biocompatible polysaccharide, is considered to be an excellent template for the design of a hybrid biopolymer-based metal oxide nanocomposite. In this case, lanthanum oxide nanoparticles doped with chitosan at different weight percentages (5, 10, 15, and 20 wt% CS/La2O3) were prepared via a simple solution casting method. The prepared CS/La2O3 nanocomposite solutions were cast in a Petri dish in order to produce the developed catalyst, which was shaped as a thin film. The structural features of the hybrid nanocomposite film were studied by FTIR, SEM, and XRD analytical tools. FTIR spectra confirmed the presence of the major characteristic peaks of chitosan, which were modified by interaction with La2O3 nanoparticles. Additionally, SEM graphs showed dramatic morphological changes on the surface of chitosan, which is attributed to surface adsorption with La2O3 molecules. The prepared CS/La2O3 nanocomposite film (15% by weight) was investigated as an effective, recyclable, and heterogeneous base catalyst in the synthesis of pyridines and pyrazoles. The nanocomposite used was sufficiently stable and was collected and reused more than three times without loss of catalytic activity.


Asunto(s)
Quitosano/química , Pirazoles/química , Piridinas/química , Antibacterianos/química , Catálisis , Lantano/química , Nanocompuestos/química , Nanopartículas/química , Óxidos/química
12.
J Heterocycl Chem ; 58(6): 1286-1301, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34230687

RESUMEN

Diverse new azoloazines were synthesized from the reaction of fluorinated hydrazonoyl chlorides with heterocyclic thiones, 1,8-diaminonaphthalene, ketene aminal derivatives, and 4-amino-5-triflouromethyl-1,2,4-triazole-2-thiol. The mechanistic pathways and the structures of all synthesized derivatives were discussed and assured based on the available spectral data. The synthesized azoloazine derivatives were evaluated for their antifungal and antibacterial activities through zone of inhibition measurement. The results revealed promising antifungal activities for compounds 4, 5, 17a,b, 19, and 25 against the pathogenic fungal strains used; Aspergillus flavus and Candida albicans compared to ketoconazole. In addition, compounds 4, 5, 19, and 25 showed moderate antibacterial activities against most tested bacterial strains. Molecular docking studies of the promising compounds were carried out on leucyl-tRNA synthetase active site of Candida albicans, suggesting good binding in the active site forming stable complexes. Moreover, docking of the synthesized compounds was performed on the active site of SARS-CoV-2 3CLpro to predict their potential as a hopeful anti-COVID and to investigate their binding pattern.

13.
Bioorg Chem ; 105: 104354, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33091672

RESUMEN

Three series of nanosized-formazan analogues were synthesized from the reaction of dithiazone with various types of α-haloketones (ester and acetyl substituted hydrazonoyl chlorides and phenacyl bromides) in sodium ethoxide solution. The structure and the crystal size of the new synthesized derivatives were assured based on the spectral analyses, XRD and SEM data. The antibacterial and antifungal activities were evaluated by agar diffusion technique. The results showed mild to moderate antibacterial activities and moderate to potent antifungal activities. Significant antifungal activities were observed for four derivatives 3a, 3d, 5a and 5g on the pathogenic fungal strains; Aspergillus flavus and Candida albicans with inhibition zone ranging from 16 to 20 mm. Molecular docking simulations of the synthesized compounds into leucyl-tRNA synthetase editing domain of Candida albicans suggested that most formazan analogues can fit deeply forming stable complexes in the active site. Furthermore, we utilized the docking approach to examine the potential of these compounds to inhibit SARS-CoV-2 3CLpro. The results were very promising verifying these formazan analogues as a hopeful antiviral agents.


Asunto(s)
Antiinfecciosos/síntesis química , Proteasas 3C de Coronavirus/metabolismo , Formazáns/química , Simulación del Acoplamiento Molecular , Nanoestructuras/química , SARS-CoV-2/metabolismo , Antiinfecciosos/metabolismo , Antiinfecciosos/farmacología , Aspergillus flavus/efectos de los fármacos , Sitios de Unión , COVID-19/patología , COVID-19/virología , Candida albicans/efectos de los fármacos , Dominio Catalítico , Proteasas 3C de Coronavirus/química , Formazáns/metabolismo , Formazáns/farmacología , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Humanos , Leucina-ARNt Ligasa/química , Leucina-ARNt Ligasa/metabolismo , SARS-CoV-2/aislamiento & purificación
14.
Bioorg Chem ; 98: 103761, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32200332

RESUMEN

The crucial need for novel antitumor agents with high selectivity toward cancer cells has promoted us to synthesize new series of thiazole-based chalcones and 4-hetarylthiazoles (rigid chalcones). The synthesis of thiazolyl chalcones and 4-hetarylthiazoles and the assertion of their structure are described. Their anti-proliferative activity was estimated against three human cancer cell lines; HepG-2, A549 and MCF-7. 3-(4-Methoxyphenyl)-1-(5-methyl-2-(methylamino)thiazol-4-yl)prop-2-en-1-one (chalcone derivative 3a) showed significant and broad antitumor activity that was more potent than Doxorubicin. In addition, compounds 3d, 3e and 7a displayed potent activity compared to Doxorubicin. Additionally, these compounds were less toxic on normal lung cells WI-38 with high selectivity index. Further study on 3a regarding its effect on the normal cell cycle profile in A549 cells demonstrated cell cycle arrest at the G2/M phase together with rise in the percentage of the apoptotic pre-G1 cells. CDK1/CDK2/CDK4 inhibition assays were carried out on 3a, 3d, 3e and 7a and the results revealed non selective inhibition on the tested CDKs with IC50 values of 0.78-1.97 µM. Moreover, docking study predicted that 3a, 3d, 3e and 7a can fit in the ATP binding site of CDK1 enzyme. The apoptosis induction potential of 3a, 3d, 3e and 7a was also estimated against some apoptosis markers. Interestingly, they elevated the level of Bax by 6.36-10.12 folds and reduced the expression of Bcl-2 by 1.94-4.12 folds compared to the control. Furthermore, they increased both active caspase-3 and p53 levels by 8.76-10.56 and 6.85-10.36 folds, respectively higher than the control which indicates their potential to induce apoptosis.


Asunto(s)
Antineoplásicos/farmacología , Chalconas/farmacología , Descubrimiento de Drogas , Tiazoles/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Chalconas/síntesis química , Chalconas/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad , Tiazoles/síntesis química , Tiazoles/química
15.
Bioorg Chem ; 102: 104103, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32717695

RESUMEN

An easy access to a series of N-phenylmorpholine derivatives linked with thiazole or formazan moieties were achieved using simple experimental procedure under conventional and microwaves irradiation conditions. The reaction of 2-(N-phenylmorpholine)ethylidene)hydrazine-1-carbothioamide derivatives and [1-(4-morpholin-4-yl-phenyl)-ethylidene]-hydrazine with a variety of hydrazonoyl chlorides or phenacyl bromide derivatives afforded the corresponding thiazoles or N-substitutedhydrazino-derivatives linked to N-phenylmorpholine moiety in good to excellent yields. The structures of the newly synthesized compounds were fully emphasized and characterized by spectroscopic as well as elemental analyses. The mode of binding of some selected compounds with SS-DNA was evaluated using UV-Vis absorption, and viscosity measurements. The results showed intercalation binding mode of most of the tested compounds. Both antimicrobial and anti-cancer activities have been studied for some selected compounds from synthetic derivatives. Their results showed a remarkable efficacy for some derivatives against both examined microbes and cancer cells.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Antineoplásicos/farmacología , ADN/efectos de los fármacos , Animales , Antibacterianos/síntesis química , Antibacterianos/química , Antifúngicos/síntesis química , Antifúngicos/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Sitios de Unión/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , ADN/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Escherichia coli/efectos de los fármacos , Humanos , Klebsiella pneumoniae/efectos de los fármacos , Masculino , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Morfolinas/química , Morfolinas/farmacología , Salmón , Salmonella typhimurium/efectos de los fármacos , Espermatozoides/química , Staphylococcus/efectos de los fármacos , Relación Estructura-Actividad , Tiazoles/síntesis química , Tiazoles/química , Tiazoles/farmacología , Células Tumorales Cultivadas
16.
Bioorg Chem ; 104: 104316, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33022549

RESUMEN

Herein, molecular hybridization strategy was utilized in the design of new benzosuberone-thiazole derivatives. The structures of the synthesized hybrids were determined on the basis of elemental and spectral analyses. These compounds were evaluated for their antibacterial activities against five bronchitis causing bacteria in addition to their anti-tubercular activities. Most compounds revealed promising activities. Amongst active compounds, benzosuberone-dithiazole derivatives 22a and 28 with MIC value = 1.95 µg/ml against H. influenza, M. pneumonia, and B. pertussis displayed four times the activity of ciprofloxacin (MIC = 7.81 µg/ml) against H. influenza, twice the activity of ciprofloxacin (MIC = 3.9 µg/ml) against M. pneumonia and were equipotent to ciprofloxacin against B. pertussis (MIC = 1.95 µg/ml). Additionally, benzosuberone-dithiazole derivatives 22a and 27 were the most promising anti-tubercular among the tested compounds with MIC values of 0.12 and 0.24 µg/ml, respectively against sensitive M. tuberculosis in addition to high activity against resistant strain of M. tuberculosis (MIC = 0.98 and 1.95 µg/ml, respectively) compared to isoniazid (MIC = 0.12 µg/ml against sensitive M. tuberculosis and no activity against resistant M. tuberculosis). Cytotoxicity study of the active dithiazole derivatives 22a, 27 and 28 against normal human lung cells (WI-38) indicated their high safety profile as showed from their high IC50 values (IC50 = 107, 74.8, and 117 µM, respectively). Furthermore, DNA gyrase supercoiling and ATPase activity assays showed that 22a, 27 and 28 have the potential to inhibit DNA gyrase at low micromolar levels (IC50 = 3.29-15.64 µM). Molecular docking analysis was also carried out to understand the binding profiles of the synthesized compounds into the ATPase binding sites of bacterial and mycobacterial DNA gyraseB.


Asunto(s)
Adenosina Trifosfatasas/antagonistas & inhibidores , Antibacterianos/farmacología , Cumarinas/farmacología , Girasa de ADN/metabolismo , Tiazoles/farmacología , Inhibidores de Topoisomerasa II/farmacología , Adenosina Trifosfatasas/metabolismo , Antibacterianos/síntesis química , Antibacterianos/química , Bordetella pertussis/efectos de los fármacos , Línea Celular , Cumarinas/química , Relación Dosis-Respuesta a Droga , Humanos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Estructura Molecular , Mycobacterium tuberculosis/efectos de los fármacos , Mycoplasma pneumoniae/efectos de los fármacos , Relación Estructura-Actividad , Tiazoles/química , Inhibidores de Topoisomerasa II/síntesis química , Inhibidores de Topoisomerasa II/química
17.
Bioorg Chem ; 105: 104330, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33038552

RESUMEN

Targeting VEGFR-2 signaling pathway is well-established as an important approach for the treatment of solid tumors, particularly renal cancer. Herein, novel indolyl-1,2,4-triazole hybrids were designed and synthesized as VEGFR-2 kinase inhibitors with potential anti-renal cancer activity. The structures of the newly synthesized compounds were confirmed based on their spectral and elemental analyses. The results of in vitro kinase assay indicated that all target compounds revealed submicromolar inhibition of VEGFR-2 kinase enzyme. Analogs 5c, 5d and 9b emerged as the most active compounds (IC50 = 0.034-0.064 µM), showing VEGFR-2 inhibitory activity much superior to that of sunitinib reference drug (IC50 = 0.075 µM). Moreover, compounds 5a, 8c, 9d, 12c were equipotent to sunitinib against VEGFR-2 kinase. Additionally, the most potent compounds were further examined for their anticancer activity against two human renal cancer cell lines. All screened compounds effectively inhibited the growth of the two tested cell lines with IC50 values spanning from sub-micromolar to low micromolar levels. Compounds 5b, 5d, 11c and 12c were three to five-fold more potent than sunitinib against CAKI-1 cell line. Analogue 8c was superior/comparable to sunitinib against CAKI-1/A498 cell lines. Moreover, compound 9d showed double potency of sunitinib against A498 cell line. Besides, compounds 8c and 12c demonstrated a safety profile much better than that of sunitinib against non-cancer human renal cells. As well, the docked models of title compounds revealed strong interactions with key residues within the active site of VEGFR-2 kinase.


Asunto(s)
Antineoplásicos/síntesis química , Indoles/química , Neoplasias Renales/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/síntesis química , Triazoles/síntesis química , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Acetofenonas/química , Antineoplásicos/farmacología , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Inhibidores de Proteínas Quinasas/farmacología , Relación Estructura-Actividad , Sunitinib/farmacología , Sunitinib/normas , Triazoles/farmacología
18.
Molecules ; 24(9)2019 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-31060260

RESUMEN

Based on the extensive biological activities of thiazole derivatives against different types of diseases, we are interested in the effective part of many natural compounds, so we synthesized a new series of compounds containing di-, tri- and tetrathiazole moieties. The formation of such derivatives proceeded via reaction of 2-bromo-1-(4-methyl-2-(methylamino)thiazol-5-yl)ethan-1-one with heterocyclic amines, o-aminothiophenol and thiosemicarbazone derivatives. The structure and mechanistic pathways for all products were discussed and proved based on spectral results, in addition to conformational studies. Our aim after the synthesis is to investigate their antimicrobial activity against various types of bacteria and fungi species. Preceeding such an investigation, a molecular docking study was carried out with selected conformers, as representative examples, against three pathogen-proteins. This preliminary stage could support the biological application. The potency of these compounds as antimicrobial agents has been evaluated. The results showed that derivatives which have di- and trithiazole rings displayed high activity that exceeds the used standard antibiotic.


Asunto(s)
Antiinfecciosos/síntesis química , Bacterias/efectos de los fármacos , Hongos/efectos de los fármacos , Tiazoles/síntesis química , Antiinfecciosos/química , Antiinfecciosos/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad , Tiazoles/química , Tiazoles/farmacología
19.
Molecules ; 24(21)2019 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-31694325

RESUMEN

A novel series of pyrazolo[1,5-a]pyrimidine ring systems containing phenylsulfonyl moiety have been synthesized via the reaction of 2-(phenylsulfonyl)-1-(4-(phenylsulfonyl) phenyl)ethan-1-one, 2-benzenesulfonyl-1-(4-benzenesulfonyl-phenyl)-3-dimethylamino-propenone and 3-(dimethylamino)-1-(4-(phenylsulfonyl)phenyl)prop-2-en-1-one each with various substituted aminoazopyrazole derivatives in one pot reaction strategy. The proposed structure as well as the mechanism of their reactions were discussed and proved with all possible spectral data. The results of antimicrobial activities of the new sulfone derivatives revealed that several derivatives showed activity exceeding the activity of reference drug. Contrary to expectations, we found that derivatives containing one sulfone group are more effective against all bacteria and fungi used than those contain two sulfone groups.


Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/farmacología , Bacterias/efectos de los fármacos , Hongos/efectos de los fármacos , Pirazoles/química , Pirazoles/farmacología , Pirimidinas/química , Pirimidinas/farmacología , Relación Estructura-Actividad , Sulfonas/química , Sulfonas/farmacología
20.
Molecules ; 22(2)2017 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-28218718

RESUMEN

Novel 2-thiazolylphthalazine derivatives were efficiently synthesized under ultrasound irradiation, resulting in high yields and short reaction times after optimization of the reaction conditions. All prepared compounds were fully characterized using spectroscopic methods. They were screened for their antimicrobial activity against Gram-positive and Gram-negative bacteria as well as for antifungal activity. The antimicrobial activity profile of the tested compounds showed some promising results. The potent activity of compounds 4d, 7b (117% zone inhibition) and 7c (105% zone inhibition) against Salmonella sp., exceeding that of the reference drug Gentamycin is particularly noteworthy. In general, the newly synthesized thiazolylphthalazine derivatives showed higher antimicrobial activity against the tested Gram-negative bacteria than against Gram-positive bacteria and fungi.


Asunto(s)
Antiinfecciosos/síntesis química , Antiinfecciosos/farmacología , Ftalazinas/síntesis química , Ftalazinas/farmacología , Ondas Ultrasónicas , Antiinfecciosos/química , Bacterias/efectos de los fármacos , Técnicas de Química Sintética , Hongos/efectos de los fármacos , Estructura Molecular , Ftalazinas/química , Relación Estructura-Actividad , Tiazoles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA