Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
BMC Bioinformatics ; 23(1): 251, 2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35751030

RESUMEN

Glioma is the most aggressive and dangerous primary brain tumor with a survival time of less than 14 months. Segmentation of tumors is a necessary task in the image processing of the gliomas and is important for its timely diagnosis and starting a treatment. Using 3D U-net architecture to perform semantic segmentation on brain tumor dataset is at the core of deep learning. In this paper, we present a unique cloud-based 3D U-Net method to perform brain tumor segmentation using BRATS dataset. The system was effectively trained by using Adam optimization solver by utilizing multiple hyper parameters. We got an average dice score of 95% which makes our method the first cloud-based method to achieve maximum accuracy. The dice score is calculated by using Sørensen-Dice similarity coefficient. We also performed an extensive literature review of the brain tumor segmentation methods implemented in the last five years to get a state-of-the-art picture of well-known methodologies with a higher dice score. In comparison to the already implemented architectures, our method ranks on top in terms of accuracy in using a cloud-based 3D U-Net framework for glioma segmentation.


Asunto(s)
Neoplasias Encefálicas , Aprendizaje Profundo , Glioma , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Nube Computacional , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Semántica
2.
Proteins ; 89(6): 659-670, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33469960

RESUMEN

Human multidrug resistance protein 1 (hMRP1) is an important member of the ATP-binding cassette (ABC) transporter superfamily. It can extrude a variety of anticancer drugs and physiological organic anions across the plasma membrane, which is activated by substrate binding, and is accompanied by large-scale cooperative movements between different domains. Currently, it remains unclear completely about how the specific interactions between hMRP1 and its substrate are and which critical residues are responsible for allosteric signal transduction. To the end, we first construct an inward-facing state of hMRP1 using homology modeling method, and then dock substrate proinflammatory agent leukotriene C4 (LTC4) to hMRP1 pocket. The result manifests LTC4 interacts with two parts of hMRP1 pocket, namely the positively charged pocket (P pocket) and hydrophobic pocket (H pocket), similar to its binding mode with bMRP1 (bovine MRP1). Additionally, we use the Gaussian network model (GNM)-based thermodynamic method proposed by us to identify the key residues whose perturbations markedly alter their binding free energy. Here the conventional GNM is improved with covalent/non-covalent interactions and secondary structure information considered (denoted as sscGNM). In the result, sscGNM improves the flexibility prediction, especially for the nucleotide binding domains with rich kinds of secondary structures. The 46 key residue clusters located in different subdomains are identified which are highly consistent with experimental observations. Furtherly, we explore the long-range cooperation within the transporter. This study is helpful for strengthening the understanding of the work mechanism in ABC exporters and can provide important information to scientists in drug design studies.


Asunto(s)
Adenosina Trifosfato/química , Leucotrieno C4/química , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/química , Adenosina Trifosfato/metabolismo , Sitio Alostérico , Animales , Bovinos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Leucotrieno C4/metabolismo , Simulación del Acoplamiento Molecular , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Transducción de Señal , Electricidad Estática , Homología Estructural de Proteína , Especificidad por Sustrato , Termodinámica
3.
BMC Infect Dis ; 20(1): 480, 2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32631335

RESUMEN

BACKGROUND: Influenza A virus (IAV) infection is a serious public health problem not only in South East Asia but also in European and African countries. Scientists are using network biology to dig deep into the essential host factors responsible for regulation of virus infections. Researchers can explore the virus invasion into the host cells by studying the virus-host relationship based on their protein-protein interaction network. METHODS: In this study, we present a comprehensive IAV-host protein-protein interaction network that is obtained based on the literature-curated protein interaction datasets and some important interaction databases. The network is constructed in Cytoscape and analyzed with its plugins including CytoHubba, CytoCluster, MCODE, ClusterViz and ClusterOne. In addition, Gene Ontology and KEGG enrichment analyses are performed on the highly IAV-associated human proteins. We also compare the current results with those from our previous study on Hepatitis C Virus (HCV)-host protein-protein interaction network in order to find out valuable information. RESULTS: We found out 1027 interactions among 829 proteins of which 14 are viral proteins and 815 belong to human proteins. The viral protein NS1 has the highest number of associations with human proteins followed by NP, PB2 and so on. Among human proteins, LNX2, MEOX2, TFCP2, PRKRA and DVL2 have the most interactions with viral proteins. Based on KEGG pathway enrichment analysis of the highly IAV-associated human proteins, we found out that they are enriched in the KEGG pathway of basal cell carcinoma. Similarly, the result of KEGG analysis of the common host factors involved in IAV and HCV infections shows that these factors are enriched in the infection pathways of Hepatitis B Virus (HBV), Viral Carcinoma, measles and certain other viruses. CONCLUSION: It is concluded that the list of proteins we identified might be used as potential drug targets for the drug design against the infectious diseases caused by Influenza A Virus and other viruses.


Asunto(s)
Interacciones Huésped-Patógeno/genética , Virus de la Influenza A/metabolismo , Gripe Humana/metabolismo , Mapas de Interacción de Proteínas/genética , Biología de Sistemas/métodos , Proteínas Portadoras/genética , Proteínas de Unión al ADN/genética , Hepacivirus/metabolismo , Hepatitis C/metabolismo , Hepatitis C/virología , Humanos , Gripe Humana/virología , Proteínas de la Nucleocápside , Factores de Transcripción/genética , Proteínas del Núcleo Viral/genética , Proteínas no Estructurales Virales/genética , Replicación Viral
4.
BMC Infect Dis ; 19(1): 367, 2019 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-31039741

RESUMEN

BACKGROUND: Hepatitis C Virus is becoming a major health problem in Asia and across the globe since it is causing serious liver diseases including liver cirrhosis, chronic hepatitis and hepatocarcinoma (HCC). Protein interaction networks presents us innumerable novel insights into functional constitution of proteome and helps us finding potential candidates for targeting the drugs. METHODS: Here we present a comprehensive protein interaction network of Hepatitis C Virus with its host, constructed by literature curated interactions. The network was constructed and explored using Cytoscape and the results were further analyzed using KEGG pathway, Gene Ontology enrichment analysis and MCODE. RESULTS: We found 1325 interactions between 12 HCV proteins and 940 human genes, among which 21 were intraviral and 1304 were HCV-Human. By analyzing the network, we found potential human gene list with their number of interactions with HCV proteins. ANXA2 and NR4A1 were interacting with 6 HCV proteins while we found 11 human genes which were interacting with 5 HCV proteins. Furthermore, the enrichment analysis and Gene Ontology of the top genes to find the pathways and the biological processes enriched with those genes. Among the viral proteins, NS3 was interacting with most number of interactors followed by NS5A and so on. KEGG pathway analysis of three set of most HCV- associated human genes was performed to find out which gene products are involved in certain disease pathways. Top 5, 10 and 20 human genes with most interactions were analyzed which revealed some striking results among which the top 10 host genes came up to be significant because they were more related to Influenza A viral infection previously. This insight provides us with a clue that the set of genes are highly enriched in HCV but are not well studied in its infection pathway. CONCLUSIONS: We found out a group of proteins which were rich in HCV viral pathway but there were no drugs targeting them according to the drug repurposing hub. It can be concluded that the cluster we obtained from MCODE contains potential targets for HCV treatment and could be implemented for molecular docking and drug designing further by the scientists.


Asunto(s)
Hepacivirus/metabolismo , Hepatitis C/diagnóstico , Mapas de Interacción de Proteínas , Proteínas Virales/metabolismo , Análisis por Conglomerados , Ontología de Genes , Hepatitis C/metabolismo , Humanos
5.
Front Immunol ; 13: 985450, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36091024

RESUMEN

The emerging monkeypox virus (MPXV) is a zoonotic orthopoxvirus that causes infections in humans similar to smallpox. Since May 2022, cases of monkeypox (MPX) have been increasingly reported by the World Health Organization (WHO) worldwide. Currently, there are no clinically validated treatments for MPX infections. In this study, an immunoinformatics approach was used to identify potential vaccine targets against MPXV. A total of 190 MPXV-2022 proteins were retrieved from the ViPR database and subjected to various analyses including antigenicity, allergenicity, toxicity, solubility, IFN-γ, and virulence. Three outer membrane and extracellular proteins were selected based on their respective parameters to predict B-cell and T-cell epitopes. The epitopes are conserved among different strains of MPXV and the population coverage is 100% worldwide, which will provide broader protection against various strains of the virus globally. Nine overlapping MHC-I, MHC-II, and B-cell epitopes were selected to design multi-epitope vaccine constructs linked with suitable linkers in combination with different adjuvants to enhance the immune responses of the vaccine constructs. Molecular modeling and structural validation ensured high-quality 3D structures of vaccine constructs. Based on various immunological and physiochemical properties and docking scores, MPXV-V2 was selected for further investigation. In silico cloning revealed a high level of gene expression for the MPXV-V2 vaccine within the bacterial expression system. Immune and MD simulations confirmed the molecular stability of the MPXV-V2 construct, with high immune responses within the host cell. These results may aid in the development of experimental vaccines against MPXV with increased potency and improved safety.


Asunto(s)
Vacunas , Vacunología , Biología Computacional/métodos , Epítopos de Linfocito B , Humanos , Monkeypox virus , Vacunología/métodos , Proteínas Virales/genética
6.
World J Virol ; 10(6): 288-300, 2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34909403

RESUMEN

Almost all the cellular processes in a living system are controlled by proteins: They regulate gene expression, catalyze chemical reactions, transport small molecules across membranes, and transmit signal across membranes. Even, a viral infection is often initiated through virus-host protein interactions. Protein-protein interactions (PPIs) are the physical contacts between two or more proteins and they represent complex biological functions. Nowadays, PPIs have been used to construct PPI networks to study complex pathways for revealing the functions of unknown proteins. Scientists have used PPIs to find the molecular basis of certain diseases and also some potential drug targets. In this review, we will discuss how PPI networks are essential to understand the molecular basis of virus-host relationships and several databases which are dedicated to virus-host interaction studies. Here, we present a short but comprehensive review on PPIs, including the experimental and computational methods of finding PPIs, the databases dedicated to virus-host PPIs, and the associated various applications in protein interaction networks of some lethal viruses with their hosts.

7.
Sci Rep ; 10(1): 8719, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32457456

RESUMEN

Human papilloma virus (HPV) is a serious threat to human life globally with over 100 genotypes including cancer causing high risk HPVs. Study on protein interaction maps of pathogens with their host is a recent trend in 'omics' era and has been practiced by researchers to find novel drug targets. In current study, we construct an integrated protein interaction map of HPV with its host human in Cytoscape and analyze it further by using various bioinformatics tools. We found out 2988 interactions between 12 HPV and 2061 human proteins among which we identified MYLK, CDK7, CDK1, CDK2, JAK1 and 6 other human proteins associated with multiple viral oncoproteins. The functional enrichment analysis of these top-notch key genes is performed using KEGG pathway and Gene Ontology analysis, which reveals that the gene set is enriched in cell cycle a crucial cellular process, and the second most important pathway in which the gene set is involved is viral carcinogenesis. Among the viral proteins, E7 has the highest number of associations in the network followed by E6, E2 and E5. We found out a group of genes which is not targeted by the existing drugs available for HPV infections. It can be concluded that the molecules found in this study could be potential targets and could be used by scientists in their drug design studies.


Asunto(s)
Redes Reguladoras de Genes , Papillomaviridae/fisiología , Infecciones por Papillomavirus/metabolismo , Proteínas Virales/metabolismo , Análisis por Conglomerados , Biología Computacional/métodos , Interacciones Huésped-Patógeno , Humanos , Anotación de Secuencia Molecular , Papillomaviridae/metabolismo , Infecciones por Papillomavirus/virología , Mapas de Interacción de Proteínas , Proteómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA