Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 622(7983): 627-636, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37821702

RESUMEN

Senescent cells drive age-related tissue dysfunction partially through the induction of a chronic senescence-associated secretory phenotype (SASP)1. Mitochondria are major regulators of the SASP; however, the underlying mechanisms have not been elucidated2. Mitochondria are often essential for apoptosis, a cell fate distinct from cellular senescence. During apoptosis, widespread mitochondrial outer membrane permeabilization (MOMP) commits a cell to die3. Here we find that MOMP occurring in a subset of mitochondria is a feature of cellular senescence. This process, called minority MOMP (miMOMP), requires BAX and BAK macropores enabling the release of mitochondrial DNA (mtDNA) into the cytosol. Cytosolic mtDNA in turn activates the cGAS-STING pathway, a major regulator of the SASP. We find that inhibition of MOMP in vivo decreases inflammatory markers and improves healthspan in aged mice. Our results reveal that apoptosis and senescence are regulated by similar mitochondria-dependent mechanisms and that sublethal mitochondrial apoptotic stress is a major driver of the SASP. We provide proof-of-concept that inhibition of miMOMP-induced inflammation may be a therapeutic route to improve healthspan.


Asunto(s)
Apoptosis , Senescencia Celular , Citosol , ADN Mitocondrial , Mitocondrias , Animales , Ratones , Citosol/metabolismo , ADN Mitocondrial/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Necrosis por Permeabilidad de la Transmembrana Mitocondrial , Prueba de Estudio Conceptual , Inflamación/metabolismo , Fenotipo , Longevidad , Envejecimiento Saludable
3.
Curr Osteoporos Rep ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38829487

RESUMEN

PURPOSE OF REVIEW: Beyond aging, senescent cells accumulate during multiple pathological conditions, including chemotherapy, radiation, glucocorticoids, obesity, and diabetes, even earlier in life. Therefore, cellular senescence represents a unifying pathogenic mechanism driving skeletal and metabolic disorders. However, whether senescent bone marrow adipocytes (BMAds) are causal in mediating skeletal dysfunction has only recently been evaluated. RECENT FINDINGS: Despite evidence of BMAd senescence following glucocorticoid therapy, additional evidence for BMAd senescence in other conditions has thus far been limited. Because the study of BMAds presents unique challenges making these cells difficult to isolate and image, here we review issues and approaches to overcome such challenges, and present advancements in isolation and histological techniques that may help with the future study of senescent BMAds. Further insights into the roles of BMAd senescence in the pathogenesis of skeletal dysfunction may have important basic science and clinical implications for human physiology and disease.

4.
Calcif Tissue Int ; 112(3): 338-349, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36729139

RESUMEN

Impact microindentation (IMI) is a novel technique for assessing bone material strength index (BMSi) in vivo, by measuring the depth of a micron-sized, spherical tip into cortical bone that is then indexed to the depth of the tip into a reference material. The aim of this study was to define the reference intervals for men and women by evaluating healthy adults from the United States of America, Europe and Australia. Participants included community-based volunteers and participants drawn from clinical and population-based studies. BMSi was measured on the tibial diaphysis using an OsteoProbe in 479 healthy adults (197 male and 282 female, ages 25 to 98 years) across seven research centres, between 2011 and 2018. Associations between BMSi, age, sex and areal bone mineral density (BMD) were examined following an a posteriori method. Unitless BMSi values ranged from 48 to 101. The mean (± standard deviation) BMSi for men was 84.4 ± 6.9 and for women, 79.0 ± 9.1. Healthy reference intervals for BMSi were identified as 71.0 to 97.9 for men and 59.8 to 95.2 for women. This study provides healthy reference data that can be used to calculate T- and Z-scores for BMSi and assist in determining the utility of BMSi in fracture prediction. These data will be useful for positioning individuals within the population and for identifying those with BMSi at the extremes of the population.


Asunto(s)
Huesos , Fracturas Óseas , Humanos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Densidad Ósea , Hueso Cortical , Tibia , Absorciometría de Fotón
5.
Curr Osteoporos Rep ; 18(5): 559-567, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32794138

RESUMEN

PURPOSE OF REVIEW: Senescent cells are now known to accumulate in multiple tissues with aging and through their inflammation (the senescence-associated secretory phenotype, SASP) contribute to aging and chronic diseases. Here, we review the roles of senescent osteocytes in the context of bone loss. RECENT FINDINGS: Numerous studies have established that senescent osteocytes accumulate in the bone microenvironment with aging in mice and in humans. Moreover, at least in mice, elimination of senescent cells results in attenuation of age-related bone loss. Osteocyte senescence also occurs in response to other cellular stressors, including radiotherapy, chemotherapy, and metabolic dysfunction, where it appears to mediate skeletal deterioration. Osteocyte senescence is linked to bone loss associated with aging and other conditions. Senescent osteocytes are potential therapeutic targets to alleviate skeletal dysfunction. Additional studies better defining the underlying mechanisms as well as translating these exciting findings from mouse models to humans are needed.


Asunto(s)
Envejecimiento , Senescencia Celular , Osteocitos , Osteoporosis , Animales , Antineoplásicos , Microambiente Celular , Diabetes Mellitus Tipo 2 , Humanos , Ratones , Radioterapia , Estrés Fisiológico
6.
Int J Mol Sci ; 21(20)2020 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-33050175

RESUMEN

The recent identification of senescent cells in periodontal tissues has the potential to provide new insights into the underlying mechanisms of periodontal disease etiology. DNA damage-driven senescence is perhaps one of the most underappreciated delayed consequences of persistent Gram-negative bacterial infection and inflammation. Although the host immune response rapidly protects against bacterial invasion, oxidative stress generated during inflammation can indirectly deteriorate periodontal tissues through the damage to vital cell macromolecules, including DNA. What happens to those healthy cells that reside in this harmful environment? Emerging evidence indicates that cells that survive irreparable genomic damage undergo cellular senescence, a crucial intermediate mechanism connecting DNA damage and the immune response. In this review, we hypothesize that sustained Gram-negative bacterial challenge, chronic inflammation itself, and the constant renewal of damaged tissues create a permissive environment for the abnormal accumulation of senescent cells. Based on emerging data we propose a model in which the dysfunctional presence of senescent cells may aggravate the initial immune reaction against pathogens. Further understanding of the role of senescent cells in periodontal disease pathogenesis may have clinical implications by providing more sophisticated therapeutic strategies to combat tissue destruction.


Asunto(s)
Senescencia Celular , Susceptibilidad a Enfermedades , Enfermedades Periodontales/etiología , Enfermedades Periodontales/metabolismo , Infecciones Bacterianas/complicaciones , Infecciones Bacterianas/microbiología , Microambiente Celular , Daño del ADN , Manejo de la Enfermedad , Susceptibilidad a Enfermedades/inmunología , Interacciones Huésped-Patógeno/inmunología , Humanos , Inflamación/complicaciones , Inflamación/etiología , Inflamación/metabolismo , FN-kappa B/metabolismo , Salud Bucal , Enfermedades Periodontales/patología , Enfermedades Periodontales/terapia , Periodoncio/inmunología , Periodoncio/metabolismo , Periodoncio/patología , Transducción de Señal , Estrés Fisiológico
7.
Chembiochem ; 20(3): 366-370, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30419144

RESUMEN

The brain's astrocytes play key roles in normal and pathological brain processes. Targeting small molecules to astrocytes in the presence of the many other cell types in the brain will provide useful tools for their visualization and manipulation. Herein, we explore the functional consequences of synthetic modifications to a recently described astrocyte marker composed of a bright rhodamine-based fluorophore and an astrocyte-targeting moiety. We altered the nature of the targeting moiety to probe the dependence of astrocyte targeting on hydrophobicity, charge, and pKa when exposed to astrocytes and neurons isolated from the mouse cortex. We found that an overall molecular charge of +2 and a targeting moiety with a heterocyclic aromatic amine are important requirements for specific and robust astrocyte labeling. These results provide a basis for engineering astrocyte-targeted molecular tools with unique properties, including metabolite sensing or optogenetic control.


Asunto(s)
Astrocitos/citología , Sondas Moleculares/análisis , Sondas Moleculares/química , Rodaminas/análisis , Rodaminas/química , Animales , Corteza Cerebral/citología , Ratones , Neuronas/citología , Imagen Óptica , Rodaminas/síntesis química
8.
Tetrahedron Lett ; 59(37): 3435-3438, 2018 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-30344353

RESUMEN

Lipidated cyclopropenes serve as useful bioorthogonal reagents for imaging cell membranes due to the cyclopropene's small size and ability to ligate with pro-fluorescent tetrazines. Previously, the lipidation of cyclopropenes required modification at the C3 position because methods to append lipids at C1/C2 were not available. Herein, we describe C1/C2 lipidation with the biologically active lipid ceramide and a common phospholipid using a cyclopropene scaffold whose reactivity with 1,2,4,5-tetrazines has been caged.

9.
Calcif Tissue Int ; 100(5): 500-513, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28013362

RESUMEN

A complex interplay of genetic, environmental, hormonal, and behavioral factors affect skeletal development, several of which are associated with childhood fractures. Given the rise in obesity worldwide, it is of particular concern that excess fat accumulation during childhood appears to be a risk factor for fractures. Plausible explanations for this higher fracture risk include a greater propensity for falls, greater force generation upon fall impact, unhealthy lifestyle habits, and excessive adipose tissue that may have direct or indirect detrimental effects on skeletal development. To date, there remains little resolution or agreement about the impact of obesity and adiposity on skeletal development as well as the mechanisms underpinning these changes. Limitations of imaging modalities, short duration of follow-up in longitudinal studies, and differences among cohorts examined may all contribute to conflicting results. Nonetheless, a linear relationship between increasing adiposity and skeletal development seems unlikely. Fat mass may confer advantages to the developing cortical and trabecular bone compartments, provided that gains in fat mass are not excessive. However, when fat mass accumulation reaches excessive levels, unfavorable metabolic changes may impede skeletal development. Mechanisms underpinning these changes may relate to changes in the hormonal milieu, with adipokines potentially playing a central role, but again findings have been confounding. Changes in the relationship between fat and bone also appear to be age and sex dependent. Clearly, more work is needed to better understand the controversial impact of fat and obesity on skeletal development and fracture risk during childhood.


Asunto(s)
Adiposidad/fisiología , Desarrollo Óseo/fisiología , Huesos/fisiología , Obesidad/fisiopatología , Niño , Femenino , Humanos , Masculino
10.
Blood ; 123(5): 647-9, 2014 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-24227822

RESUMEN

Patients with monoclonal gammopathy of undetermined significance (MGUS) are at increased fracture risk, and we have previously shown that MGUS patients have altered trabecular bone microarchitecture compared with controls. However, there are no data on whether the porosity of cortical bone, which may play a greater role in bone strength and the occurrence of fractures, is increased in MGUS. Thus, we studied cortical porosity and bone strength (apparent modulus) using high-resolution peripheral quantitative computed tomography imaging of the distal radius in 50 MGUS patients and 100 age-, gender-, and body mass index-matched controls. Compared with controls, MGUS patients had both significantly higher cortical porosity (+16.8%; P < .05) and lower apparent modulus (-8.9%; P < .05). Despite their larger radial bone size, MGUS patients have significantly increased cortical bone porosity and reduced bone strength relative to controls. This increased cortical porosity may explain the increased fracture risk seen in MGUS patients.


Asunto(s)
Fracturas Óseas/etiología , Gammopatía Monoclonal de Relevancia Indeterminada/complicaciones , Radio (Anatomía)/patología , Anciano , Índice de Masa Corporal , Femenino , Fracturas Óseas/diagnóstico por imagen , Fracturas Óseas/patología , Humanos , Masculino , Persona de Mediana Edad , Gammopatía Monoclonal de Relevancia Indeterminada/patología , Porosidad , Radiografía , Radio (Anatomía)/diagnóstico por imagen
11.
Curr Opin Rheumatol ; 26(4): 447-52, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24807403

RESUMEN

PURPOSE OF REVIEW: Recent data suggest that inhibitors of sclerostin, an osteocyte-produced Wnt signaling pathway antagonist, can stimulate bone formation. This review provides rationale and summarizes recent evidence supporting this novel approach to skeletal anabolism. RECENT FINDINGS: Data from numerous preclinical models in rodents and monkeys consistently demonstrate that antisclerostin monoclonal antibody (Scl-Ab) treatment leads to improvements in bone mass and strength, as well as enhanced fracture repair. Delivery of Scl-Ab therapy either subcutaneously or intravenously in phase 1 and 2 human clinical trials demonstrates short-term anabolic responses in excess of those seen with teriparatide, the only currently available anabolic skeletal agent. Gains have been primarily at central (spine and hips) versus peripheral (wrist) sites. Strikingly, Scl-Ab treatment appears to both stimulate bone formation and inhibit bone resorption in humans. If proven, Scl-Ab would be the first pharmacologic agent with such dual properties. Data on fractures are not yet available. SUMMARY: Scl-Ab therapy represents a novel pharmacologic approach to skeletal anabolism. Although many questions remain before Scl-Ab treatment can be introduced into clinical practice, phase 3 human clinical trials are currently underway and could provide the necessary data to bring this exciting class of skeletal anabolic agents to patient care.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Proteínas Morfogenéticas Óseas/inmunología , Curación de Fractura/efectos de los fármacos , Marcadores Genéticos/inmunología , Osteogénesis/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales , Humanos
12.
Calcif Tissue Int ; 94(2): 202-11, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24077875

RESUMEN

Peripheral quantitative computed tomography (pQCT) is an essential tool for assessing bone parameters of the limbs, but subject movement and its impact on image quality remains a challenge to manage. The current approach to determine image viability is by visual inspection, but pQCT lacks a quantitative evaluation. Therefore, the aims of this study were to (1) examine the reliability of a qualitative visual inspection scale and (2) establish a quantitative motion assessment methodology. Scans were performed on 506 healthy girls (9-13 years) at diaphyseal regions of the femur and tibia. Scans were rated for movement independently by three technicians using a linear, nominal scale. Quantitatively, a ratio of movement to limb size (%Move) provided a measure of movement artifact. A repeat-scan subsample (n = 46) was examined to determine %Move's impact on bone parameters. Agreement between measurers was strong (intraclass correlation coefficient = 0.732 for tibia, 0.812 for femur), but greater variability was observed in scans rated 3 or 4, the delineation between repeat and no repeat. The quantitative approach found ≥95% of subjects had %Move <25 %. Comparison of initial and repeat scans by groups above and below 25% initial movement showed significant differences in the >25 % grouping. A pQCT visual inspection scale can be a reliable metric of image quality, but technicians may periodically mischaracterize subject motion. The presented quantitative methodology yields more consistent movement assessment and could unify procedure across laboratories. Data suggest a delineation of 25% movement for determining whether a diaphyseal scan is viable or requires repeat.


Asunto(s)
Fémur/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/normas , Movimiento/fisiología , Tibia/diagnóstico por imagen , Tomografía Computarizada por Rayos X/normas , Adolescente , Niño , Estudios Transversales , Femenino , Humanos , Control de Calidad , Estándares de Referencia , Reproducibilidad de los Resultados , Tomografía Computarizada por Rayos X/métodos
13.
J Clin Densitom ; 17(2): 275-80, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24631254

RESUMEN

The ISCD 2007 Pediatric Official Positions define osteoporosis in children on the basis of fracture history and low bone density, adjusted as appropriate for age, gender, and body size. The task force on fracture prediction and osteoporosis definition has reviewed these positions and suggests modifications with respect to vertebral fracture and the definition of a significant fracture history and draws attention to the need to consider degree of trauma as a factor that may modify fracture risk prediction.


Asunto(s)
Fracturas Óseas/epidemiología , Adolescente , Niño , Fracturas Óseas/fisiopatología , Humanos , Fracturas Osteoporóticas/epidemiología , Fracturas Osteoporóticas/fisiopatología , Medición de Riesgo , Fracturas de la Columna Vertebral/epidemiología , Fracturas de la Columna Vertebral/fisiopatología
14.
Pediatr Exerc Sci ; 26(4): 384-91, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25372373

RESUMEN

Although primarily considered a disorder of the elderly, emerging evidence suggests the antecedents of osteoporosis are established during childhood and adolescence. A complex interplay of genetic, environmental, hormonal and behavioral factors determines skeletal development, and a greater effort is needed to identify the most critical factors that establish peak bone strength. Indeed, knowledge of modifiable factors that determine skeletal development may permit optimization of skeletal health during growth and could potentially offset reductions in bone strength with aging. The peripubertal years represent a unique period when the skeleton is particularly responsive to loading exercises, and there is now overwhelming evidence that exercise can optimize skeletal development. While this is not controversial, the most effective exercise prescription and how much investment in this prescription is needed to significantly impact bone health continues to be debated. Despite considerable progress, these issues are not easy to address, and important questions remain unresolved. This review focuses on the key determinants of skeletal development, whether exercise during childhood and adolescence should be advocated as a safe and effective strategy for optimizing peak bone strength, and whether investment in exercise early in life protects against the development of osteoporosis and fractures later in life.


Asunto(s)
Desarrollo Óseo/fisiología , Ejercicio Físico/fisiología , Adolescente , Composición Corporal/fisiología , Niño , Hormonas/metabolismo , Humanos , Osteoporosis/prevención & control
15.
J Bone Miner Res ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38843356

RESUMEN

Histone deacetylase 3 (Hdac3) is an epigenetic regulator of gene expression and interacts with skeletal transcription factors such as Runx2. We previously reported that conditional deletion of Hdac3 in Osterix-Cre recombinase-expressing osteoprogenitor cells (Hdac3 CKOOsx) caused osteopenia and increased marrow adiposity, both hallmarks of skeletal aging. We also showed that Runx2+ cells within osteogenic cultures of Hdac3-depleted bone marrow stromal cells (BMSCs) contain lipid droplets (LDs). Cellular senescence, a non-proliferative metabolically active state, is associated with increased marrow adiposity, bone loss and aging. In this study, we sought to determine if Hdac3 depleted Runx2+ pre-osteoblasts from young mice exhibit chromatin changes associated with early cellular senescence and how these events correlate with the appearance of LDs. We first confirmed that BMSCs from Hdac3 CKOOsx mice have more Runx2 + LD+ cells compared to controls under osteogenic conditions. We then measured senescence-associated distention of satellite DNA (SADS) and telomere-associated foci (TAFs) in Hdac3 CKOOsx and control BMSCs. In situ, Runx2+ cells contained more SADs per nuclei in Hdac3 CKOOsx femora than in controls. Runx2+ BMSCs from Hdac3 CKOOsx mice also contained more SADS and TAFs per nuclei than Runx2+ cells from age-matched control mice in vitro. SADs and TAFs were present at similar levels in Runx2 + LD+ cells and Runx2 + LD- cells from Hdac3 CKOOsx mice. Hdac inhibitors also increased the number of SADS in Runx2 + LD+ and Runx2 + LD- wildtype BMSCs. Senolytics reduced viable cell numbers in Hdac3 CKOOsx BMSC cultures. These data demonstrate that depletion of Hdac3 in osteochondral progenitor cells triggers LD formation and early events in cellular senescence in Runx2+ BMSCs through mutually exclusive mechanisms.


Histone deacetylase 3 (Hdac3) is an enzyme within cells that binds factors in cell nuclei like Runx2 to regulate the expression of genes and control cellular functions. Deleting Hdac3 in cells responsible for bone formation causes bone loss and increases fat in the bone marrow, both hallmarks of skeletal aging. We observed that Hdac3-deletion causes Runx2+ bone marrow stromal cells (BMSCs) to store fats in lipid droplets (LD) even though the cultures were stimulated to become bone cells. Here, we investigated whether these Runx2 + LD+ cells exhibit signs of cellular senescence, which is a zombie-like state associated with increased marrow fat, bone loss and aging. We found that Hdac3-depleted Runx2+ cells showed chromatin changes linked to early cellular senescence alongside the formation of LDs. These findings suggest that Hdac3 plays a crucial role in preventing skeletal aging via regulating both LD formation and cellular senescence in osteochondral progenitor cells.

16.
Bone ; 179: 116973, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37996046

RESUMEN

Age- and disuse-related bone loss both result in decreases in bone mineral density, cortical thickness, and trabecular thickness and connectivity. Disuse induces changes in the balance of bone formation and bone resorption like those seen with aging. There is a need to experimentally compare these two mechanisms at a structural and transcriptomic level to better understand how they may be similar or different. Bone microarchitecture and biomechanical properties were compared between 6- and 22-month-old C57BL/6 J male control mice and 6-month-old mice that were hindlimb unloaded (HLU) for 3 weeks. Epiphyseal trabecular bone was the compartment most affected by HLU and demonstrated an intermediate bone phenotype between age-matched controls and aged controls. RNA extracted from whole-bone marrow-flushed tibiae was sequenced and analyzed. Differential gene expression analysis additionally included 4-month-old male mice unloaded for 3 weeks compared to age-matched controls. Gene ontology analysis demonstrated that there were age-dependent differences in differentially expressed genes in young adult mice. Genes related to downregulation of cellular processes were most affected in 4-month-old mice after disuse whereas those related to mitochondrial function were most affected in 6-month-old mice. Cell-cycle transition was downregulated with aging. A publicly available dataset (GSE169292) from 3-month female C57BL/6 N mice unloaded for 7 days was included in ingenuity pathway analysis (IPA) with the other datasets. IPA was used to identify the leading canonical pathways and upstream regulators in each HLU age group. IPA identified "Senescence Pathway" as the second leading canonical pathway enriched in mice exposed to HLU. HLU induced activation of the senescence pathway in 3-month and 4-month-old mice but inhibited it in 6-month-old mice. In conclusion, we demonstrate that hindlimb unloading and aging initiate similar changes in bone microarchitecture and gene expression. However, aging is responsible for more significant transcriptome and tissue-level changes compared to hindlimb unloading.


Asunto(s)
Suspensión Trasera , Transcriptoma , Ratones , Masculino , Femenino , Animales , Transcriptoma/genética , Ratones Endogámicos C57BL , Perfilación de la Expresión Génica , Epífisis , Envejecimiento/genética
17.
bioRxiv ; 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38370844

RESUMEN

Cells expressing features of senescence, including upregulation of p21 and p16, appear transiently following tissue injury, yet the properties of these cells or how they contrast with age-induced senescent cells remains unclear. Here, we used skeletal injury as a model and identified the rapid appearance following fracture of p21+ cells expressing senescence markers, mainly as osteochondroprogenitors (OCHs) and neutrophils. Targeted genetic clearance of p21+ cells suppressed senescence-associated signatures within the fracture callus and accelerated fracture healing. By contrast, p21+ cell clearance did not alter bone loss due to aging; conversely, p16+ cell clearance, known to alleviate skeletal aging, did not affect fracture healing. Following fracture, p21+ neutrophils were enriched in signaling pathways known to induce paracrine stromal senescence, while p21+ OCHs were highly enriched in senescence-associated secretory phenotype factors known to impair bone formation. Further analysis revealed an injury-specific stem cell-like OCH subset that was p21+ and highly inflammatory, with a similar inflammatory mesenchymal population (fibro-adipogenic progenitors) evident following muscle injury. Thus, intercommunicating senescent-like neutrophils and mesenchymal progenitor cells are key regulators of tissue repair in bone and potentially across tissues. Moreover, our findings establish contextual roles of p21+ vs p16+ senescent/senescent-like cells that may be leveraged for therapeutic opportunities.

18.
J Clin Invest ; 134(12)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38753433

RESUMEN

Cells expressing features of senescence, including upregulation of p21 and p16, appear transiently following tissue injury, yet the properties of these cells or how they contrast with age-induced senescent cells remains unclear. Here, we used skeletal injury as a model and identified the rapid appearance following fracture of p21+ cells expressing senescence markers, mainly as osteochondroprogenitors (OCHs) and neutrophils. Targeted genetic clearance of p21+ cells suppressed senescence-associated signatures within the fracture callus and accelerated fracture healing. By contrast, p21+ cell clearance did not alter bone loss due to aging; conversely, p16+ cell clearance, known to alleviate skeletal aging, did not affect fracture healing. Following fracture, p21+ neutrophils were enriched in signaling pathways known to induce paracrine stromal senescence, while p21+ OCHs were highly enriched in senescence-associated secretory phenotype factors known to impair bone formation. Further analysis revealed an injury-specific stem cell-like OCH subset that was p21+ and highly inflammatory, with a similar inflammatory mesenchymal population (fibro-adipogenic progenitors) evident following muscle injury. Thus, intercommunicating senescent-like neutrophils and mesenchymal progenitor cells were key regulators of tissue repair in bone and potentially across tissues. Moreover, our findings established contextual roles of p21+ versus p16+ senescent/senescent-like cells that may be leveraged for therapeutic opportunities.


Asunto(s)
Senescencia Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Curación de Fractura , Neutrófilos , Neutrófilos/metabolismo , Neutrófilos/patología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Animales , Ratones , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Biomarcadores/metabolismo , Células Madre Mesenquimatosas/metabolismo , Masculino
19.
Nat Med ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956196

RESUMEN

Preclinical evidence demonstrates that senescent cells accumulate with aging and that senolytics delay multiple age-related morbidities, including bone loss. Thus, we conducted a phase 2 randomized controlled trial of intermittent administration of the senolytic combination dasatinib plus quercetin (D + Q) in postmenopausal women (n = 60 participants). The primary endpoint, percentage changes at 20 weeks in the bone resorption marker C-terminal telopeptide of type 1 collagen (CTx), did not differ between groups (median (interquartile range), D + Q -4.1% (-13.2, 2.6), control -7.7% (-20.1, 14.3); P = 0.611). The secondary endpoint, percentage changes in the bone formation marker procollagen type 1 N-terminal propeptide (P1NP), increased significantly (relative to control) in the D + Q group at both 2 weeks (+16%, P = 0.020) and 4 weeks (+16%, P = 0.024), but was not different from control at 20 weeks (-9%, P = 0.149). No serious adverse events were observed. In exploratory analyses, the skeletal response to D + Q was driven principally by women with a high senescent cell burden (highest tertile for T cell p16 (also known as CDKN2A) mRNA levels) in which D + Q concomitantly increased P1NP (+34%, P = 0.035) and reduced CTx (-11%, P = 0.049) at 2 weeks, and increased radius bone mineral density (+2.7%, P = 0.004) at 20 weeks. Thus, intermittent D + Q treatment did not reduce bone resorption in the overall group of postmenopausal women. However, our exploratory analyses indicate that further studies are needed testing the hypothesis that the underlying senescent cell burden may dictate the clinical response to senolytics. ClinicalTrials.gov identifier: NCT04313634 .

20.
Endocrinol Metab (Seoul) ; 38(3): 295-301, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37312256

RESUMEN

Osteoporosis and type 2 diabetes (T2D) are common diseases that often coexist. While both of these diseases are associated with poor bone quality and increased fracture risk, their pathogenesis of increased fracture risk differs and is multifactorial. Mounting evidence now indicates that key fundamental mechanisms that are central to both aging and energy metabolism exist. Importantly, these mechanisms represent potentially modifiable therapeutic targets for interventions that could prevent or alleviate multiple complications of osteoporosis and T2D, including poor bone quality. One such mechanism that has gained increasing momentum is senescence, which is a cell fate that contributes to multiple chronic diseases. Accumulating evidence has established that numerous boneresident cell types become susceptible to cellular senescence with old age. Recent work also demonstrates that T2D causes the premature accumulation of senescent osteocytes during young adulthood, at least in mice, although it remains to be seen which other bone-resident cell types become senescent with T2D. Given that therapeutically removing senescent cells can alleviate age-related bone loss and T2D-induced metabolic dysfunction, it will be important in future studies to rigorously test whether interventions that eliminate senescent cells can also alleviate skeletal dysfunction in context of T2D, as it does with aging.


Asunto(s)
Diabetes Mellitus Tipo 2 , Osteoporosis , Ratones , Animales , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/patología , Envejecimiento/patología , Senescencia Celular , Huesos/metabolismo , Huesos/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA