Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Labelled Comp Radiopharm ; 63(12): 502-516, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32812275

RESUMEN

One of the main challenges in targeted alpha therapy is assuring delivery of the α-particle dose to the targeted cells. Thus, it is critical to identify ligands for α-emitting radiometals that will form complexes that are very stable, both in vitro and in vivo. In this investigation, thorium-227 (t1/2 = 18.70 days) chelation of ligands containing hydroxypyridinonate (HOPO) or picolinic acid (pa) moieties and the stability of the resultant complexes were studied. Chelation reactions were followed by reversed-phased HPLC and gamma spectroscopy. Studies revealed that high 227 Th chelation yields could be obtained within 2.5 h or less with ligands containing four Me-3,2-HOPO moieties, 1 (83%) and 2 (65%), and also with ligands containing pa moieties, H4 octapa 3 (65%) and H4 py4pa 6 (87%). No reaction occurred with H4 neunpa-p-Bn-NO2 4, and the chelation reaction with another pa ligand H4 pypa 5 gave inconsistent yields with a very broad radio-HPLC peak. The ligands spermine-(Me-3,2-HOPO)4 1, H4 octapa 3, and H4 py4pa 6 had high stability (i.e., 87% of 227 Th still bound to the ligand) in phosphate-buffered saline at room temperature over a 6-day period. Preliminary studies with ligand 6 demonstrated efficient chelation of thorium-226 (t1/2 = 30.57 min) when heated to 80°C for 5 min.


Asunto(s)
Partículas alfa/uso terapéutico , Quelantes/química , Torio/química , Torio/uso terapéutico
2.
Anal Chem ; 90(11): 7012-7017, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29757620

RESUMEN

Protactinium-230 ( t1/2 = 17.4 d) is the parent isotope of 230U ( t1/2 = 20.8 d), a radionuclide of interest for targeted alpha therapy (TAT). Column chromatographic methods have been developed to separate no-carrier-added 230Pa from proton irradiated thorium targets and accompanying fission products. Results reported within demonstrate the use of novel sulfur bearing chromatographic extraction resins for the selective separation of protactinium. The recovery yield of 230Pa was 93 ± 4% employing a R3P═S type commercially available resin and 88 ± 4% employing a DGTA (diglycothioamide) containing custom synthesized extraction chromatographic resin. The radiochemical purity of the recovered 230Pa was measured via high purity germanium γ-ray spectroscopy to be >99.5% with the remaining radioactive contaminant being 95Nb due to its similar chemistry to protactinium. Measured equilibrium distribution coefficients for protactinium, thorium, uranium, niobium, radium, and actinium on both the R3P═S type and the DGTA resin in hydrochloric acid media are reported, to the best of our knowledge, for the first time.


Asunto(s)
Protactinio/aislamiento & purificación , Resinas Sintéticas/química , Estructura Molecular , Protactinio/química , Resinas Sintéticas/síntesis química , Propiedades de Superficie , Timidina/análogos & derivados , Timidina/síntesis química , Timidina/química , Uranio/química , Uranio/aislamiento & purificación
3.
Nucl Med Biol ; 136-137: 108941, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39002499

RESUMEN

Bismuth-213 is a radionuclide of interest for targeted alpha therapy and is supplied via a radiochemical generator system through the decay of 225Ac. Radionuclide generators employ longer lived "parent" radionuclides to routinely supply shorter-lived "daughter" radionuclides. The traditional 225Ac/213Bi radiochemical generator relies on an organic cation exchange resin where 225Ac binds to the resin and 213Bi is routinely eluted. These resins degrade when they absorb large doses of ionizing radiation (>1 × 106 Gy/mg), which has been observed when the loading activity of 225Ac exceeds 2.59*109 Bq (70 mCi). Herein we report the development of an electrochemical generator for the supply of 213Bi that has the potential to overcome this limitation. Bismuth-213 spontaneously electrodeposits onto nickel foils in 0.1 M hydrochloric acid at 70 °C. Using this method, we were able to plate an average of 73 ± 4 % of the 213Bi in solution and obtain a final 213Bi recovery of 65 ± 8 % in 0.1 M citrate pH 4.5 via reverse electrolysis using titanium as the cathode. The recovered 213Bi had an average radiochemical purity of >99.8 % and was successfully used to radiolabel DOTATATE with an average radiochemical yield of 85.1 % (not optimized).

4.
J Chromatogr A ; 1711: 464438, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37857154

RESUMEN

Scandium-44g (t1/2 = 4.0 h) is an emerging radioisotope for positron emission tomography. It can be produced with a radiochemical generator using its long-lived parent, titanium-44 (t1/2 = 59.1 years). This work presents a new inorganic substrate for 44Ti/44gSc radiochemical generator design based on porous TiO2 microbeads (80 µm and 110 µm particle size, 60 Å pores). Comprehensive evaluation of conditions optimal for generator construction (44Ti loading) and use (44gSc elution) is provided in three steps. For stable 44Ti loading onto titania, heat-treatment at 180 °C for 90 min is shown to be effective while 0.3 M HCl(aq) is identified as the medium of choice for 44gSc elution. Two titania-based 3.6 MBq generators prepared under optimized conditions are characterized with respect to 44gSc recovery and 44Ti breakthrough. Each of these generators employed a different guard substrate to minimize 44Ti breakthrough, TiO2 microbeads and ZR resin. Both are shown to provide comparable 44gSc recoveries close to 50% but differ in 44Ti breakthrough, which is significantly lower with the organic ZR resin guard substrate at 0.0002%. This concept represents a new inorganic-organic approach to 44Ti/44gSc generator design. Benefits of both substrates are exploited: TiO2 has potential for durability necessary for utilizing the long half-life of the 44Ti parent while ZR resin guard segments minimize 44Ti breakthrough.


Asunto(s)
Radioisótopos , Escandio , Escandio/química , Titanio/química , Radiofármacos
5.
Sci Rep ; 13(1): 1736, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36720963

RESUMEN

A process for the production of tens to hundreds of GBq amounts of zirconium-88 (88Zr) using proton beams on yttrium was developed. For this purpose, yttrium metal targets (≈20 g) were irradiated in a ~16 to 34 MeV proton beam at a beam current of 100-200 µA at the Los Alamos Isotope Production Facility (IPF). The 88Zr radionuclide was produced and separated from the yttrium targets using hydroxamate resin with an elution yield of 94(5)% (1σ). Liquid DCl solution in D2O was selected as a suitable 88Zr sample matrix due to the high neutron transmission of deuterium compared to hydrogen and an even distribution of 88Zr in the sample matrix. The separated 88Zr was dissolved in DCl and 8 µL of the obtained solution was transferred to a tungsten sample can with a 1.2 mm diameter hole using a syringe and automated filling station inside a hot cell. Neutron transmission of the obtained 88Zr sample was measured at the Device for Indirect Capture Experiments on Radionuclides (DICER).

6.
Nat Chem ; 13(3): 284-289, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33318671

RESUMEN

Developing targeted α-therapies has the potential to transform how diseases are treated. In these interventions, targeting vectors are labelled with α-emitting radioisotopes that deliver destructive radiation discretely to diseased cells while simultaneously sparing the surrounding healthy tissue. Widespread implementation requires advances in non-invasive imaging technologies that rapidly assay therapeutics. Towards this end, positron emission tomography (PET) imaging has emerged as one of the most informative diagnostic techniques. Unfortunately, many promising α-emitting isotopes such as 225Ac and 227Th are incompatible with PET imaging. Here we overcame this obstacle by developing large-scale (Ci-scale) production and purification methods for 134Ce. Subsequent radiolabelling and in vivo PET imaging experiments in a small animal model demonstrated that 134Ce (and its 134La daughter) could be used as a PET imaging candidate for 225AcIII (with reduced 134CeIII) or 227ThIV (with oxidized 134CeIV). Evaluating these data alongside X-ray absorption spectroscopy results demonstrated how success relied on rigorously controlling the CeIII/CeIV redox couple.


Asunto(s)
Cerio/química , Lantano/química , Tomografía de Emisión de Positrones , Radiofármacos/química , Abdomen/diagnóstico por imagen , Animales , Radioisótopos de Cerio/química , Oxidación-Reducción , Radiofármacos/metabolismo , Distribución Tisular
7.
J Chromatogr A ; 1624: 461219, 2020 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-32540068

RESUMEN

The alpha-emitter 225Ac (t1/2 = 9.92 d) is currently under development for targeted alpha-particle therapy of cancer, and accelerator production of 225Ac via proton irradiation of thorium targets requires robust separations of 225Ac from chemically similar fission product lanthanides. Additionally, the lanthanide elements represent critical components in modern technologies, and radiolanthanides such as 140Nd (t1/2 = 3.37 d) also have potential application in the field of nuclear medicine. The ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Bmim][NTf2]), combined with the diglycolamide extractant, N,N-dioctyldiglycolamic acid (DODGAA), was adsorbed on macroporous resin support to produce a solvent impregnated resin (SIR) that was investigated for separations of 225Ac and lanthanides. The equilibrium distribution coefficients (Kd) of the rare earth elements (Sc(III), Y(III), Ln(III)), 225Ac(III), Th(IV), and U(VI) on the prepared DODGAA/[Bmim][NTf2]-SIR were determined from batch adsorption experiments in HCl and HNO3 media. The DODGAA/[Bmim][NTf2]-SIR exhibited preferential uptake of the heavier lanthanide elements while allowing for the separation of the lighter lanthanides. Column separations utilizing the DODGAA/[Bmim][NTf2]-SIR were effective at separating the lighter lanthanides from each other, and separating 225Ac from a mixture of lanthanides, 213Bi, and 225Ra without the need for additional complexing agents.


Asunto(s)
Actinio/aislamiento & purificación , Cromatografía por Intercambio Iónico/métodos , Glicolatos/química , Imidazoles/química , Elementos de la Serie de los Lantanoides/química , Líquidos Iónicos/química , Elementos de la Serie de los Lantanoides/aislamiento & purificación , Porosidad , Solventes/química , Espectrofotometría Atómica
8.
Nucl Med Biol ; 90-91: 69-73, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33068963

RESUMEN

PURPOSE: Thorium-226 (half-life 30.6 m) is a radionuclide of interest for use in targeted alpha therapy applications. Due to its short half-life, 226Th must be provided through a radionuclide generator system from its parent 230U (20.8 d). Furthermore, as the half-life of 226Th is very short, it should be provided in a form that is directly amenable to use in biomedical applications. METHODS: A reverse radionuclide generator system was developed employing a DGA extraction chromatography column. A 230U/226Th parent/daughter solution in equilibrium is added to a DGA column in >6 M HCl. The parent 230U is eluted first in 0.1 M HNO3 followed by elution of 226Th in 0.1 M citrate buffer pH 5. RESULTS: Thorium-226 was recovered from the radionuclide generator column with >96% yield. Greater than 99.5% of the 230U parent was isolated for reuse in the generator. Long term evaluation over six weeks demonstrated consistent supply of 226Th with greater than 99.5% radionuclidic purity. The only contaminant found in the final product was 230U (<0.5%). CONCLUSIONS: The reverse radionuclide generator described herein was shown to be a feasible method for providing 226Th in high yield, purity and in a chemical form that is amenable for direct use in biomedical applications.


Asunto(s)
Generadores de Radionúclidos , Torio/uso terapéutico , Uranio/uso terapéutico , Semivida
9.
Appl Radiat Isot ; 156: 108973, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31727509

RESUMEN

Uranium-230 (t1/2 = 20.8 d) is an alpha-emitting radionuclide that has potential application in targeted alpha therapy (TAT) of cancer. Its parent isotope 230Pa (t1/2 = 17.4 d), can be produced by proton irradiation of thorium metal targets. Preliminary 230Pa production runs were performed at the Los Alamos National Laboratory Isotope Production Facility (LANL-IPF) using thin thorium metal targets and a proton beam energy of 15-30 MeV, followed by radiochemical separation of 230Pa from the irradiated target matrix. The measured 230Pa production yields were found to exceed the predicted values in most of the experiments that were performed. This data will inform further production efforts for providing 230Pa/230U for clinical trials.


Asunto(s)
Partículas alfa , Protactinio/química , Radioisótopos/química , Torio/química , Protones
10.
ACS Cent Sci ; 5(3): 494-505, 2019 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-30937377

RESUMEN

Radionuclides find widespread use in medical technologies for treating and diagnosing disease. Among successful and emerging radiotherapeutics, 119Sb has unique potential in targeted therapeutic applications for low-energy electron-emitting isotopes. Unfortunately, developing 119Sb-based drugs has been slow in comparison to other radionuclides, primarily due to limited accessibility. Herein is a production method that overcomes this challenge and expands the available time for large-scale distribution and use. Our approach exploits high flux and fluence from high-energy proton sources to produce longer lived 119mTe. This parent isotope slowly decays to 119Sb, which in turn provides access to 119Sb for longer time periods (in comparison to direct 119Sb production routes). We contribute the target design, irradiation conditions, and a rapid procedure for isolating the 119mTe/119Sb pair. To guide process development and to understand why the procedure was successful, we characterized the Te/Sb separation using Te and Sb K-edge X-ray absorption spectroscopy. The procedure provides low-volume aqueous solutions that have high 119mTe-and consequently 119Sb-specific activity in a chemically pure form. This procedure has been demonstrated at large-scale (production-sized, Ci quantities), and the product has potential to meet stringent Food and Drug Administration requirements for a 119mTe/119Sb active pharmaceutical ingredient.

11.
Target Oncol ; 13(2): 189-203, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29423595

RESUMEN

Alpha-emitters are radionuclides that decay through the emission of high linear energy transfer α-particles and possess favorable pharmacologic profiles for cancer treatment. When coupled with monoclonal antibodies, peptides, small molecules, or nanoparticles, the excellent cytotoxic capability of α-particle emissions has generated a strong interest in exploring targeted α-therapy in the pre-clinical setting and more recently in clinical trials in oncology. Multiple obstacles have been overcome by researchers and clinicians to accelerate the development of targeted α-therapies, especially with the recent improvement in isotope production and purification, but also with the development of innovative strategies for optimized targeting. Numerous studies have demonstrated the in vitro and in vivo efficacy of the targeted α-therapy. Radium-223 (223Ra) dichloride (Xofigo®) is the first α-emitter to have received FDA approval for the treatment of prostate cancer with metastatic bone lesions. There is a significant increase in the number of clinical trials in oncology using several radionuclides such as Actinium-225 (225Ac), Bismuth-213 (213Bi), Lead-212 (212Pb), Astatine (211At) or Radium-223 (223Ra) assessing their safety and preliminary activity. This review will cover their therapeutic application as well as summarize the investigations that provide the foundation for further clinical development.


Asunto(s)
Partículas alfa/uso terapéutico , Neoplasias/terapia , Humanos
12.
Dalton Trans ; 47(15): 5189-5195, 2018 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-29528078

RESUMEN

The separation of Th, Pa, and U is of high importance in many applications including nuclear power, nuclear waste, environmental and geochemistry, nuclear forensics and nuclear medicine. Diglycolamide (DGA)-based resins have shown the ability to separate many elements, however, these resins consist of non-covalent impregnation of the DGA molecules on the resin backbone resulting in co-elution of the extraction molecule during separation cycles, therefore limiting their long-term and repeated use. Covalently binding the DGA molecules onto silica is one way to overcome this issue. Herein, measured equilibrium distribution coefficients of normal extraction chromatographic DGA resin and a covalently bound form (KIT-6-N-DGA sorbent) are reported. Several differences are observed between the two systems, the most significant being observed for uranium, which demonstrated significantly lower sorption behavior on KIT-6-N-DGA. These results indicate that U can effectively be separated from Th and Pa using KIT-6-N-DGA, a task that could not be completed with the use of normal DGA alone.

13.
Anal Chim Acta ; 998: 75-82, 2018 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-29153089

RESUMEN

Column chromatographic methods have been developed to separate no-carrier-added 111Ag from proton irradiated thorium targets and associated fission products as an ancillary process to an existing 225Ac separation design. Herein we report the separation of 111Ag both prior and subsequent to 225Ac recovery using CL resin, a solvent impregnated resin (SIR) that carries an organic solution of alkyl phosphine sulfides (R3P = S) and alkyl phosphine oxides (R3P = O). The recovery yield of 111Ag was 93 ± 9% with a radiochemical purity of 99.9% (prior) and 87 ± 9% with a radiochemical purity of 99.9% (subsequent to) 225Ac recovery. Both processes were successfully performed with insignificant impacts on 225Ac yields or quality. Measured equilibrium distribution coefficients for silver and ruthenium (a residual contaminant) on CL resin in hydrochloric and nitric acid media are reported, to the best of our knowledge, for the first time. Additionally, measured cross sections for the production of 111Ag and 110mAg for the 232Th(p,f)110m,111Ag reactions are reported within.


Asunto(s)
Actinio/química , Protones , Plata/aislamiento & purificación , Nanomedicina Teranóstica , Torio/química , Plata/química , Espectrometría gamma
14.
Sci Rep ; 7(1): 8216, 2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-28811573

RESUMEN

A new method has been developed for the isolation of 223,224,225Ra, in high yield and purity, from a proton irradiated 232Th matrix. Herein we report an all-aqueous process using multiple solid-supported adsorption steps including a citrate chelation method developed to remove >99.9% of the barium contaminants by activity from the final radium product. A procedure involving the use of three columns in succession was developed, and the separation of 223,224,225Ra from the thorium matrix was obtained with an overall recovery yield of 91 ± 3%, average radiochemical purity of 99.9%, and production yields that correspond to physical yields based on previously measured excitation functions.

15.
Nucl Med Biol ; 50: 25-32, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28432915

RESUMEN

Scandium-44g (half-life 3.97h) shows promise for application in positron emission tomography (PET), due to favorable decay parameters. One of the sources of 44gSc is the 44Ti/44gSc generator, which can conveniently provide this radioisotope on a daily basis at a diagnostic facility. Titanium-44 (half-life 60.0 a), in turn, can be obtained via proton irradiation of scandium metal targets. A substantial 44Ti product batch, however, requires high beam currents, long irradiation times and an elaborate chemical procedure for 44Ti isolation and purification. This study describes the production of a combined 175MBq (4.7mCi) batch yield of 44Ti in week long proton irradiations at the Los Alamos Isotope Production Facility (LANL-IPF) and the Brookhaven Linac Isotope Producer (BNL-BLIP). A two-step ion exchange chromatography based chemical separation method is introduced: first, a coarse separation of 44Ti via anion exchange sorption in concentrated HCl results in a 44Tc/Sc separation factor of 102-103. A second, cation exchange based step in HCl media is then applied for 44Ti fine purification from residual Sc mass. In summary, this method yields a 90-97% 44Ti recovery with an overall Ti/Sc separation factor of ≥106.


Asunto(s)
Protones , Radioquímica/métodos , Radioisótopos/química , Radioisótopos/aislamiento & purificación , Escandio/química , Titanio/química , Titanio/aislamiento & purificación , Rayos gamma , Radioquímica/instrumentación
16.
Talanta ; 175: 318-324, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28841997

RESUMEN

Actinium-225 is a potential Targeted Alpha Therapy (TAT) isotope. It can be generated with high energy (≥ 100MeV) proton irradiation of thorium targets. The main challenge in the chemical recovery of 225Ac lies in the separation from thorium and many fission by-products most importantly radiolanthanides. We recently developed a separation strategy based on a combination of cation exchange and extraction chromatography to isolate and purify 225Ac. In this study, actinium and lanthanide equilibrium distribution coefficients and column elution behavior for both TODGA (N,N,N',N'-tetra-n-octyldiglycolamide) and TEHDGA (N,N,N',N'-tetrakis-2-ethylhexyldiglycolamide) were determined. Density functional theory (DFT) calculations were performed and were in agreement with experimental observations providing the foundation for understanding of the selectivity for Ac and lanthanides on different DGA (diglycolamide) based resins. The results of Gibbs energy (ΔGaq) calculations confirm significantly higher selectivity of DGA based resins for LnIII over AcIII in the presence of nitrate. DFT calculations and experimental results reveal that Ac chemistry cannot be predicted from lanthanide behavior under comparable circumstances.

17.
Nucl Med Biol ; 49: 24-29, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28288384

RESUMEN

INTRODUCTION: Rhenium-186g (t1/2 = 3.72 d) is a ß- emitting isotope suitable for theranostic applications. Current production methods rely on reactor production by way of the reaction 185Re(n,γ)186gRe, which results in low specific activities limiting its use for cancer therapy. Production via charged particle activation of enriched 186W results in a 186gRe product with a higher specific activity, allowing it to be used more broadly for targeted radiotherapy applications. This targets the unmet clinical need for more efficient radiotherapeutics. METHODS: A target consisting of highly enriched, pressed 186WO3 was irradiated with protons at the Los Alamos National Laboratory Isotope Production Facility (LANL-IPF) to evaluate 186gRe product yield and quality. LANL-IPF was operated in a dedicated nominal 40 MeV mode. Alkaline dissolution followed by anion exchange chromatography was used to isolate 186gRe from the target material. Phantom and radiolabeling studies were conducted with the produced 186gRe activity. RESULTS: A 186gRe batch yield of 1.38 ± 0.09 MBq/µAh or 384.9 ± 27.3 MBq/C was obtained after 16.5 h in a 205 µA average/230µA maximum current proton beam. The chemical recovery yield was 93% and radiolabeling was achieved with efficiencies ranging from 60-80%. True specific activity of 186gRe at EOB was determined via ICP-AES and amounted to 0.788 ± 0.089 GBq/µg (0.146 ± 0.017 GBq/nmol), which is approximately seven times higher than the product obtained from neutron capture in a reactor. Phantom studies show similar imaging quality to the gold standard 99mTc. CONCLUSIONS: We report a preliminary study of the large-scale production and novel anion exchange based chemical recovery of high specific activity 186gRe from enriched 186WO3 targets in a high-intensity proton beam with exceptional chemical recovery and radiochemical purity.


Asunto(s)
Neoplasias/radioterapia , Óxidos/química , Terapia de Protones/métodos , Radioquímica/métodos , Renio/química , Renio/uso terapéutico , Tungsteno/química , Marcaje Isotópico , Neoplasias/diagnóstico por imagen , Fantasmas de Imagen , Tomografía Computarizada de Emisión de Fotón Único
18.
Appl Radiat Isot ; 114: 159-66, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27236832

RESUMEN

Novel, natural abundance metal disulfide targets were irradiated for 1h with a 10µA proton beam in a small, medical cyclotron. Osmium disulfide was synthesized by simple distillation and precipitation methods while MoS2 and WS2 were commercially available. The targets dissolved under mild conditions and were analyzed by γ-spectroscopy. Production rates and potential applications are discussed, including target recovery and recycling schemes for OsS2 and WS2.


Asunto(s)
Radioisótopos/aislamiento & purificación , Renio/aislamiento & purificación , Tecnecio/aislamiento & purificación , Ciclotrones , Disulfuros/efectos de la radiación , Humanos , Molibdeno/efectos de la radiación , Compuestos de Osmio/efectos de la radiación , Protones , Radiofármacos/aislamiento & purificación , Espectrometría gamma , Compuestos de Tungsteno/efectos de la radiación
19.
Appl Radiat Isot ; 115: 197-207, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27423020

RESUMEN

This investigation evaluated target fabrication and beam parameters for scale-up production of high specific activity (186)Re using deuteron irradiation of enriched (186)W via the (186)W(d,2n)(186)Re reaction. Thick W and WO3 targets were prepared, characterized and evaluated in deuteron irradiations. Full-thickness targets, as determined using SRIM, were prepared by uniaxially pressing powdered natural abundance W and WO3, or 96.86% enriched (186)W, into Al target supports. Alternatively, thick targets were prepared by pressing (186)W between two layers of graphite powder or by placing pre-sintered (1105°C, 12h) natural abundance WO3 pellets into an Al target support. Assessments of structural integrity were made on each target prepared. Prior to irradiation, material composition analyses were conducted using SEM, XRD, and Raman spectroscopy. Within a minimum of 24h post irradiation, gamma-ray spectroscopy was performed on all targets to assess production yields and radionuclidic byproducts. Problems were encountered with the structural integrity of some pressed W and WO3 pellets before and during irradiation, and target material characterization results could be correlated with the structural integrity of the pressed target pellets. Under the conditions studied, the findings suggest that all WO3 targets prepared and studied were unacceptable. By contrast, (186)W metal was found to be a viable target material for (186)Re production. Thick targets prepared with powdered (186)W pressed between layers of graphite provided a particularly robust target configuration.

20.
Nucl Med Biol ; 43(12): 802-811, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27694058

RESUMEN

INTRODUCTION: Targeted radiotherapy using the bifunctional chelate approach with 186/188Re(V) is challenging because of the susceptibility of monooxorhenium(V)-based complexes to oxidize in vivo at high dilution. A monoamine-monoamide dithiol (MAMA)-based bifunctional chelating agent was evaluated with both rhenium and technetium to determine its utility for in vivo applications. METHODS: A 222-MAMA chelator, 222-MAMA(N-6-Ahx-OEt) bifunctional chelator, and 222-MAMA(N-6-Ahx-BBN(7-14)NH2) were synthesized, complexed with rhenium, radiolabeled with 99mTc and 186Re (carrier added and no carrier added), and evaluated in initial biological distribution studies. RESULTS: An IC50 value of 2.0±0.7nM for natReO-222-MAMA(N-6-Ahx-BBN(7-14)NH2) compared to [125I]-Tyr4-BBN(NH2) was determined through competitive cell binding assays with PC-3 tumor cells. In vivo evaluation of the no-carrier added 99mTc-222-N2S2(N-6-Ahx-BBN(7-14)NH2) complex showed little gastric uptake and blockable pancreatic uptake in normal mice. CONCLUSIONS: The 186ReO-222-N2S2(N-6-Ahx-BBN(7-14)NH2) complex showed stability in biological media, which indicates that the 222-N2S2 chelator is appropriate for chelating 186/188Re in radiopharmaceuticals involving peptides. Additionally, the in vitro cell studies showed that the ReO-222-N2S2(N-6-Ahx-BBN(7-14)NH2) complex (macroscopically) bound to PC3-tumor cell surface receptors with high affinity. The 99mTc analog was stable in vivo and exhibited pancreatic uptake in mice that was blockable, indicating BB2r targeting.


Asunto(s)
Amidas/química , Aminas/química , Quelantes/química , Compuestos Organometálicos/química , Compuestos Organometálicos/síntesis química , Renio/química , Tolueno/análogos & derivados , Animales , Línea Celular Tumoral , Técnicas de Química Sintética , Estabilidad de Medicamentos , Ligandos , Ratones , Compuestos Organometálicos/metabolismo , Compuestos Organometálicos/farmacocinética , Distribución Tisular , Tolueno/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA