Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 29(10)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38792194

RESUMEN

The theoretical interpretation of the vaginal permeability phenomenon, the evaluation of the suitability of five artificial membranes, and the prediction of the behaviors of vaginal drugs were the main objectives of this study. Franz vertical diffusion cells and different validated HPLC methods were used to measure the permeability of six vaginally administered drugs (econazole, miconazole, metronidazole, clindamycin, lidocaine, and nonoxynol-9). This study was performed (in vitro) on different membranes of polyvinylidene fluoride (PVDF), plain cellulose or cellulose impregnated with isopropyl myristate (IPM), and cellulose combined with PVDF or IPM. The results were compared with those obtained from cow vaginal tissue (ex vivo), where cellulose was proven to be the best simulant. According to the permeability profiles (Papp), the water solubility of the drugs was considered a necessary criterion for their transport in the membranes or in the tissue, while the size was important for their penetration. Furthermore, it was found that polar compounds show clear superiority when penetrating cellulose or tissue, while non-polar ones show superiority when penetrating the lipophilic PVDF membrane. Finally, a successful attempt was made to predict the Papp values (|Papp-predPapp| < 0.005) of the six drugs under study based on a PLS (Partial Least Squares) in silico simulation model.


Asunto(s)
Membranas Artificiales , Permeabilidad , Vagina , Femenino , Vagina/metabolismo , Administración Intravaginal , Animales , Polivinilos/química , Celulosa/química , Celulosa/análogos & derivados , Bovinos , Humanos , Solubilidad , Polímeros de Fluorocarbono
2.
Drug Dev Ind Pharm ; 49(3): 249-259, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37014319

RESUMEN

OBJECTIVE: Vaginal administration is an important alternative to the oral route for both topical and systemic use. Therefore, the development of reliable in silico methods for the study of drugs permeability is becoming popular in order to avoid time-consuming and costly experiments. METHODS: In the current study, Franz cells and appropriate HPLC or ESI-Q/MS analytical methods were used to experimentally measure the apparent permeability coefficient (Papp) of 108 compounds (drugs and non-drugs). Papp values were then correlate with 75 molecular descriptors (physicochemical, structural, and pharmacokinetic) by developing two Quantitative Structure Permeability Relationship (QSPR) models, a Partial Least Square (PLS) and a Support Vector Machine (SVM). Both were validated by internal, external and cross-validation. RESULTS: Based on the calculated statistical parameters (PLS model A: R2 = 0.673 and Q2 = 0.594, PLS model B: R2 = 0.902 and Q2 = 0.631, SVM: R2 = 0.708 and Q2 = 0.758). SVM presents higher predictability while PLS adequately interprets the theory of permeability. CONCLUSIONS: The most important parameters for vaginal permeability were found to be the relative PSA, logP, logD, water solubility and fraction unbound (FU). Respectively, the combination of both models could be a useful tool for understanding and predicting the vaginal permeability of drug candidates.


Asunto(s)
Relación Estructura-Actividad Cuantitativa , Humanos , Femenino , Preparaciones Farmacéuticas/química , Permeabilidad de la Membrana Celular , Permeabilidad , Administración Intravaginal
3.
Molecules ; 28(20)2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37894565

RESUMEN

Homotaurine (HOM) is considered a promising drug for the treatment of Alzheimer's and other neurodegenerative diseases. In the present work, a new high-performance liquid chromatography with fluorescence detection (HPLC-FLD) (λex. = 340 nm and λem. = 455 nm) method was developed and validated for the study of substance permeability in the central nervous system (CNS). Analysis was performed on a RP-C18 column with a binary gradient elution system consisting of methanol-potassium phosphate buffer solution (pH = 7.0, 0.02 M) as mobile phase. Samples of homotaurine and histidine (internal standard) were initially derivatized with ortho-phthalaldehyde (OPA) (0.01 M), N-acetylcysteine (0.01 M) and borate buffer (pH = 10.5; 0.05 M). To ensure the stability and efficiency of the reaction, the presence of different nucleophilic reagents, namely (a) 2-mercaptoethanol (2-ME), (b) N-acetylcysteine (NAC), (c) tiopronin (Thiola), (d) 3-mercaptopropionic acid (3-MPA) and (e) captopril, was investigated. The method was validated (R2 = 0.9999, intra-day repeatability %RSD < 3.22%, inter-day precision %RSD = 1.83%, limits of detection 5.75 ng/mL and limits of quantification 17.43 ng/mL, recovery of five different concentrations 99.75-101.58%) and successfully applied to investigate the in vitro permeability of homotaurine using Franz diffusion cells. The apparent permeability (Papp) of HOM was compared with that of memantine, which is considered a potential therapeutic drug for various CNSs. Our study demonstrates that homotaurine exhibits superior permeability through the simulated blood-brain barrier compared to memantine, offering promising insights for enhanced drug delivery strategies targeting neurological conditions.


Asunto(s)
Acetilcisteína , Memantina , Acetilcisteína/química , Cromatografía Líquida de Alta Presión/métodos , o-Ftalaldehído/química , Indicadores y Reactivos , Tiopronina , Reproducibilidad de los Resultados
4.
Mol Pharm ; 19(1): 274-286, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34877863

RESUMEN

Most common intraocular pressure (IOP) reduction regimens for the management of glaucoma include the topical use of eye drops, a dosage form that is associated with short residence time at the site of action, increased dosing frequency, and reduced patient compliance. In situ gelling nanofiber films comprising poly(vinyl alcohol) and Poloxamer 407 were fabricated via electrospinning for the ocular delivery of timolol maleate (TM), aiming to sustain the IOP-lowering effect of the ß-blocker, compared to conventional eye drops. The electrospinning process was optimized, and the physicochemical properties of the developed formulations were thoroughly investigated. The fiber diameters of the drug-loaded films ranged between 123 and 145 nm and the drug content between 5.85 and 7.83% w/w. Total in vitro drug release from the ocular films was attained within 15 min following first-order kinetics, showing higher apparent permeability (Papp) values across porcine corneas compared to the drug's solution. The fabricated films did not induce any ocular irritation as evidenced by both the hen's egg test on chorioallantoic membrane and the in vivo Draize test. In vivo administration of the ocular films in rabbits induced a faster onset of action and a sustained IOP-lowering effect up to 24 h compared to TM solution, suggesting that the proposed ocular films are promising systems for the sustained topical delivery of TM.


Asunto(s)
Antagonistas Adrenérgicos beta/farmacología , Geles , Presión Intraocular/efectos de los fármacos , Timolol/farmacología , Administración Oftálmica , Antagonistas Adrenérgicos beta/administración & dosificación , Animales , Cromatografía Líquida de Alta Presión , Córnea/efectos de los fármacos , Córnea/metabolismo , Geles/administración & dosificación , Poloxámero , Alcohol Polivinílico , Porcinos , Timolol/administración & dosificación
5.
Anal Bioanal Chem ; 414(27): 7865-7875, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36163593

RESUMEN

A new method was developed and validated for the simultaneous determination of nicotine and tobacco-specific nitrosamines (TSNAs) 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N-nitrosonornicotine (NNN) in two different tests matrices: porcine buccal epithelium tissue and phosphate buffered saline (PBS) extracts of smokeless tobacco products. The novelty of this work is in the development of a liquid chromatography tandem mass spectrometry method that can provide simultaneous quantification of trace levels of TSNAs and high concentrations of nicotine in biological media. Precision, accuracy, and stability were evaluated during method validation to ensure the method was fit for purpose. Several sample preparation and extraction methods were evaluated to minimize matrix effects and maximize analyte recoveries. The method was accurate in the range of 81.1% - 117%; repeatability was estimated in the range of 1.5% - 13.6% across multiple concentrations. The linear regression correlation coefficient (R2) was greater than 0.9959 for all analytes, and the limit of detection (LOD) was determined for nicotine, NNK, and NNN at 1 ng/mL 0.005 ng/mL, and 0.006 ng/ mL, respectively. Our method was found to be appropriate for the analysis of nicotine, NNN, and NNK in the porcine buccal epithelium and PBS extracts of smokeless tobacco products.


Asunto(s)
Nitrosaminas , Espectrometría de Masas en Tándem , Carcinógenos/análisis , Cromatografía Líquida de Alta Presión , Nicotina , Nitrosaminas/análisis , Fosfatos , Extractos Vegetales , Nicotiana/química
6.
J Sep Sci ; 45(21): 3955-3965, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36054076

RESUMEN

A fast and green ultra-high-performance liquid chromatographic method was developed for the determination of ibuprofen in milk-containing simulated gastrointestinal media to monitor the dissolution of three-dimensional printed formulations. To remove interfering compounds, protein precipitation using methanol as a precipitation reagent was performed. The separation of the target analyte was performed on a C18 column using a mobile phase consisting of 0.05% v/v aqueous phosphoric acid solution: methanol, 25:75% v/v. Method validation was conducted using the total error concept. The ß-expectation tolerance intervals did not exceed the acceptance criteria of ±15%, meaning that 95% of future results will be included in the defined bias limits. The relative bias ranged between ─1.1 and +3.2% for all analytes, while the relative standard deviation values for repeatability and intermediate precision were less than 2.8% and 3.9%, respectively. The achieved limit of detection was 0.01 µg/ml and the lower limit of quantitation was established as 2 µg/ml. The proposed method was simple, and it required reduced organic solvent consumption following the requirements of Green Analytical Chemistry. The method was successfully employed for the determination of ibuprofen in real biorelevant media obtained from dissolution studies.


Asunto(s)
Ibuprofeno , Leche , Animales , Leche/química , Ibuprofeno/análisis , Solubilidad , Metanol , Límite de Detección , Cromatografía Liquida , Cromatografía Líquida de Alta Presión/métodos
7.
J Cell Physiol ; 236(2): 1529-1544, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32749687

RESUMEN

Exosome selectivity mechanisms underlying exosome-target cell interactions and the specific traits affecting their capability to communicate still remain unclear. Moreover, the capacity of exosomes to efficiently deliver their molecular cargos intracellularly needs precise investigation towards establishing functional exosome-based delivery platforms exploitable in the clinical practice. The current study focuses on: (a) exosome production from normal MRC-5 and Vero cells growing in culture, (b) physicochemical characterization by dynamic light scattering (DLS) and cryo-transmission electron microscopy; (c) cellular uptake studies of rhodamine-labeled exosomes in normal and cancer cells, providing to exosomes either "autologous" or "heterologous" cellular delivery environments; and (d) loading exogenous Alexa Fluor 488-labeled siRNA into exosomes for the assessment of their delivering capacity by immunofluorescence in a panel of recipient cells. The data obtained thus far indicate that MRC-5 and Vero exosomes, indeed exhibit an interesting delivering profile, as promising "bio-shuttles," being pharmacologically exploitable in the context of theranostic applications.


Asunto(s)
Sistemas de Liberación de Medicamentos , Exosomas/química , MicroARNs/uso terapéutico , ARN Interferente Pequeño/uso terapéutico , Animales , Comunicación Celular/genética , Línea Celular Tumoral , Chlorocebus aethiops , Microscopía por Crioelectrón , Exosomas/genética , Humanos , MicroARNs/química , ARN Interferente Pequeño/química , Células Vero
8.
Mol Pharm ; 18(12): 4393-4414, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34699238

RESUMEN

This article takes a step forward in understanding the mechanisms involved during the preparation and performance of cross-linked high-drug-loading (HDL) amorphous solid dispersions (ASDs). Specifically, ASDs, having 90 wt % poorly water-soluble drug indomethacin (IND), were prepared via in situ thermal cross-linking of poly(acrylic acid) (PAA) and poly(vinyl alcohol) (PVA) and thoroughly evaluated in terms of physical stability and in vitro supersaturation. Results showed that HDL ASDs having excellent active pharmaceutical ingredient (API) amorphous stability and prolonged in vitro supersaturation were prepared by fine tuning the cross-linking procedure. Unraveling of the processes involved during ASD's formation shed light on the significant role of the cross-linking conditions (i.e., temperature and time), the physicochemical properties of the API, and the hydrolysis level of the cross-linker as key factors in modulating ASD's stability. In-depth analysis of the prepared systems revealed the (1) reduction of API's molecular motions within the cross-linked polymeric networks (through API's strong spatial confinement), (2) the structural changes in the prepared cross-linked matrices (induced by the high API drug loading), and (3) the tuning of the cross-linking density via utilization of low-hydrolyzed PVA as the major mechanisms responsible for ASD's exceptional performance. Complementary analysis by means of molecular dynamics simulations also highlighted the vital role of strong drug-polymer intermolecular interactions evolving among the ASD components. Overall, the impression of the complexity of in situ cross-linked ASDs has been reinforced with the excessive variation of parameters investigated in the current study, offering thus insights up to the submolecular level to lay the groundwork and foundations for the comprehensive assessment of a new emerging class of HDL amorphous API formulations.


Asunto(s)
Estabilidad de Medicamentos , Indometacina/química , Reactivos de Enlaces Cruzados , Composición de Medicamentos , Liberación de Fármacos , Simulación de Dinámica Molecular
9.
Int J Mol Sci ; 22(4)2021 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-33672949

RESUMEN

Two different types of ordered mesoporous nanoparticles, namely MCM-41 and MCM-48, with similar pore sizes but different pore connectivity, were loaded with aprepitant via a passive diffusion method. The percentage of the loaded active agent, along with the encapsulation efficiency, was evaluated using High-performance Liquid Chromatography (HPLC) analysis complemented by Thermogravimetric Analysis (TGA). The determination of the pore properties of the mesoporous particles before and after the drug loading revealed the presence of confined aprepitant in the pore structure of the particles, while Powder X-ray Diffractometry(pXRD), Differential Scanning Calorimetry (DSC), and FTIR experiments indicated that the drug is in an amorphous state. The release profiles of the drug from the two different mesoporous materials were studied in various release media and revealed an aprepitant release up to 45% when sink conditions are applied. The cytocompatibility of the silica nanoparticles was assessed in Caco-2 cell monolayers, in the presence and absence of the active agent, suggesting that they can be used as carriers of aprepitant without presenting any toxicity in vitro.


Asunto(s)
Aprepitant/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/química , Dióxido de Silicio/química , Administración Oral , Antieméticos/administración & dosificación , Antieméticos/farmacocinética , Aprepitant/farmacocinética , Células CACO-2 , Rastreo Diferencial de Calorimetría , Cromatografía Líquida de Alta Presión , Difusión , Liberación de Fármacos , Humanos , Microscopía Electrónica de Rastreo , Nanopartículas/ultraestructura , Tamaño de la Partícula , Porosidad , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier
10.
Pharm Dev Technol ; 26(9): 978-988, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34387136

RESUMEN

To cover the unpleasant taste of amoxicillin (250 mg), maize starch (baby food) and milk chocolate were co-formulated. The raw materials and the final formulations were characterized by means of Dynamic Light Scattering (DLS), Differential Scanning Calorimetry (DSC) and Fourier-Transform Infrared (FT-IR) spectroscopy. To evaluate the taste masking two different groups of volunteers were used, according to the Ethical Research Committee of the Aristotle University of Thessaloniki. The optimization of excipients' content in the tablet was determined by experimental design methodology (crossed D-optimal). Due to the matrix complexity, amoxicillin was extracted using liquid extraction and analyzed isocratically by HPLC. The developed chromatographic method was validated (%Recovery 98.7-101.3, %RSD = 1.3, LOD and LOQ 0.15 and 0.45 µg mL-1 respectively) according to the International Conference on Harmonization (ICH) guidelines. The physicochemical properties of the tablets were also examined demonstrating satisfactory quality characteristics (diameter: 15 mm, thickness: 6 mm, hardness <98 Newton, loss of mass <1.0%, disintegration time ∼25min). Additionally, dissolution (%Recovery >90) and in vitro digestion tests (%Recovery >95) were carried out. Stability experiments indicated that amoxicillin is stable in the prepared formulations for at least one year (%Recovery <91).


Asunto(s)
Amoxicilina/síntesis química , Antibacterianos/síntesis química , Química Farmacéutica/métodos , Composición de Medicamentos/métodos , Desarrollo de Medicamentos/métodos , Gusto/efectos de los fármacos , Administración Oral , Adolescente , Adulto , Amoxicilina/administración & dosificación , Amoxicilina/farmacocinética , Antibacterianos/administración & dosificación , Antibacterianos/farmacocinética , Aspartame/administración & dosificación , Aspartame/síntesis química , Aspartame/farmacocinética , Niño , Chocolate , Evaluación Preclínica de Medicamentos/métodos , Excipientes/administración & dosificación , Excipientes/síntesis química , Excipientes/farmacocinética , Femenino , Humanos , Masculino , Masticación/efectos de los fármacos , Masticación/fisiología , Comprimidos , Gusto/fisiología , Adulto Joven , Zea mays
11.
AAPS PharmSciTech ; 22(1): 23, 2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33400042

RESUMEN

Cannabidiol (CBD) and cannabigerol (CBG) are two active pharmaceutical ingredients, derived from cannabis plant. In the present study, CBD and CBG were formulated with polyvinyl(pyrrolidone) (PVP) and Eudragit L-100, using electrohydrodynamic atomization (electrospinning). The produced fibers were smooth and uniform in shape, with average fiber diameters in the range of 700-900 nm for PVP fibers and 1-5 µm for Eudragit L-100 fibers. The encapsulation efficiency for both CB and CBG was high (over 90%) for all formulations tested. Both in vitro release and disintegration tests of the formulations in simulated gastric fluids (SGF) and simulated intestinal fluids (SIF) indicated the rapid disintegration and dissolution of the fibers and the subsequent rapid release of the drugs. The study concluded that the electrospinning process is a fast and efficient method to produce drug-loaded fibers suitable for the per os administration of cannabinoids.


Asunto(s)
Cannabidiol/administración & dosificación , Cannabinoides/administración & dosificación , Nanofibras/química , Administración Oral , Cannabidiol/química , Cannabinoides/química , Composición de Medicamentos , Liberación de Fármacos , Ácidos Polimetacrílicos/química , Povidona/química
12.
Drug Dev Ind Pharm ; 46(10): 1569-1577, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32619372

RESUMEN

In the current study a 3D-printable system was developed, based on natural, food-grade and nontoxic materials that may be used as a platform technology to host cannabinoids, and more specifically CBD for medicinal purposes. Pectin and honey were combined toward the fabrication of 3D printable inks that form solid structures upon drying. This model food-grade 3D-printed system was evaluated as a host matrix for the incorporation of CBD, in the form of inclusion complexes with ß-cyclodextrins. The prepared solid inclusion complexes were characterized by means of Differential Scanning Calorimetry (DSC), Fourier-Transform Infrared (FTIR) and Thermogravimetric Analysis (TGA) complemented with phase solubility studies and in vitro release of the ß-CD/CBD complex. The release behavior of CBD from the 3D printed formulations was assessed in simulated gastric fluid (SGF), simulated intestinal fluid (SIF) and simulated colonic fluid (SCF). The results shown that that the highest release rates of CBD were obtained in SCF medium, with minor release in SGF and SIF media.


Asunto(s)
Cannabidiol/química , Ciclodextrinas , Pectinas/química , Rastreo Diferencial de Calorimetría , Tinta , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier
13.
Drug Dev Ind Pharm ; 46(8): 1253-1264, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32597338

RESUMEN

OBJECTIVE: The inkjet printing (IP) and fused deposition modeling (FDM) technologies have emerged in the pharmaceutical field as novel and personalized formulation approaches. Specific manufacturing factors must be considered in each adopted methodology, i.e. the development of suitable substrates for IP and the incorporation of highly thermostable active pharmaceutical compounds (APIs) for FDM. In this study, IP and FDM printing technologies were investigated for the fabrication of hydroxypropyl methylcellulose-based mucoadhesive films for the buccal delivery of a thermolabile model drug. Significance: This proof-of-concept approach was expected to provide an alternative formulation methodology for personalized mucoadhesive buccal films. METHODS: Mucoadhesive substrates were prepared by FDM and were subjected to sequential IP of an ibuprofen-loaded liquid ink. The interactions between these processes and the performance of the films were evaluated by various analytical and spectroscopic techniques, as well as by in vitro and ex vivo studies. RESULTS: The model drug was efficiently deposited by sequential IP passes onto the FDM-printed substrates. Significant variations were revealed on the morphological, physicochemical and mechanical properties of the prepared films, and linked to the number of IP passes. The mechanism of drug release, the mucoadhesion and the permeation of the drug through the buccal epithelium were evaluated, in view of the extent of ink deposition onto the buccal films, as well as the distribution of the API. CONCLUSIONS: The presented methodology provided a proof-of-concept formulation approach for the development of personalized mucoadhesive films.


Asunto(s)
Derivados de la Hipromelosa/química , Preparaciones Farmacéuticas , Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos , Impresión Tridimensional
14.
Molecules ; 25(6)2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32197506

RESUMEN

One of the most challenging goals in modern pharmaceutical research is to develop models that can predict drugs' behavior, particularly permeability in human tissues. Since the permeability is closely related to the molecular properties, numerous characteristics are necessary in order to develop a reliable predictive tool. The present study attempts to decode the permeability by correlating the apparent permeability coefficient (Papp) of 33 steroids with their properties (physicochemical and structural). The Papp of the molecules was determined by in vitro experiments and the results were plotted as Y variable on a Partial Least Squares (PLS) model, while 37 pharmacokinetic and structural properties were used as X descriptors. The developed model was subjected to internal validation and it tends to be robust with good predictive potential (R2Y = 0.902, RMSEE = 0.00265379, Q2Y = 0.722, RMSEP = 0.0077). Based on the results specific properties (logS, logP, logD, PSA and VDss) were proved to be more important than others in terms of drugs Papp. The models can be utilized to predict the permeability of a new candidate drug avoiding needless animal experiments, as well as time and material consuming experiments.


Asunto(s)
Membranas Artificiales , Modelos Químicos , Esteroides/química , Difusión , Análisis de los Mínimos Cuadrados , Permeabilidad
15.
Pharm Dev Technol ; 25(4): 517-523, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31903821

RESUMEN

To this day, the oral delivery of biomacromolecules remains a major developmentally-oriented challenge. A combinatorial approach was followed at this study, to formulate an efficient carrier for the in vitro delivery of a model macromolecule, fluorescein isothiocyanate-dextran 4 kDa (FD4). The model macromolecule was formulated in a self-assembling peptide hydrogel (ac-(RADA)4-CONH2), prior to deposition in a hydroxypropyl methylcellulose-phthalate (HPMCP)-based 3D-printed capsule. Loading of FD4 was investigated for potential alterations on the structural (AFM) and gelling properties of the peptide carrier. Thermal analysis and morphological properties of the 3D-printed capsules were assessed by TGA, DSC and microscopy studies. For the peptide hydrogel, similar release profiles of FD4 were recorded in simulated gastric fluid pH 1.2 and phosphate buffer saline pH 7.4, indicating the need for a structural barrier, to protect the peptide carrier from the acidic environment of the stomach. The pH responsive character of the HPMCP-based capsule was evidenced in the release profiles of FD4 in a sequence of release media, i.e. simulated gastric fluid pH 1.2, simulated intestinal fluid pH 6.8 and phosphate buffer saline pH 7.4. The results supported the combinatorial formulation approach as a promising system for the efficient oral delivery of biomacromolecules.


Asunto(s)
Preparaciones de Acción Retardada/química , Dextranos/administración & dosificación , Fluoresceína-5-Isotiocianato/análogos & derivados , Colorantes Fluorescentes/administración & dosificación , Metilcelulosa/análogos & derivados , Péptidos/química , Cápsulas/química , Liberación de Fármacos , Fluoresceína-5-Isotiocianato/administración & dosificación , Hidrogeles/química , Concentración de Iones de Hidrógeno , Metilcelulosa/química , Impresión Tridimensional
16.
AAPS PharmSciTech ; 21(6): 208, 2020 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-32725343

RESUMEN

Lipid-based drug delivery systems (LbDDS), such as self-nanoemulsifying drug delivery systems (SNEDDS), constitute a prominent formulation approach for enhancing the aqueous solubility and oral bioavailability of poorly water-soluble compounds. Utilization of biorefinery wastes, such as oil from rice bran, may prove advantageous to both improving drug solubilization and absorption and to achieving sustainable agri-food waste valorization. Here, we assessed the effect of four SNEDDS compositions differing in the oil (rice bran oil and corn oil) and surfactant type (Kolliphor RH40 and EL) on the oral bioavailability of fenofibrate, a BCS class II compound. Prior to the in vivo oral administration of the SNEDDS in rats, drug solubilization was tested in vitro using the static digestion model, followed by the ex vivo permeability study of the predigested SNEDDS using the non-everted gut sac model. No significant variation was observed in the solubilization capacity within the different SNEDDS formulations. On the other hand, the ex vivo permeability data of the predigested SNEDDS correlated well with the in vivo bioavailability data designating the superiority of rice bran oil with Kolliphor EL as the surfactant, to enhance the oral absorption of fenofibrate. Results indicated that valorization of agro-industrial waste such as rice bran oil may prove useful in enhancing the oral performance of LbDDS in the case of fenofibrate, while at the same time maximizing the use of agricultural by-products via the creation of new sustainable value chains in the pharmaceutical field.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Emulsiones/química , Fenofibrato/administración & dosificación , Hipolipemiantes/administración & dosificación , Aceite de Salvado de Arroz/administración & dosificación , Administración Oral , Animales , Disponibilidad Biológica , Masculino , Ratas , Eliminación de Residuos
17.
Mol Pharm ; 16(6): 2326-2341, 2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-31026168

RESUMEN

Combination therapy has been conferred with manifold assets leveraging the synergy of different agents to achieve a sufficient therapeutic outcome with lower administered drug doses and reduced side effects. The therapeutic potency of a self-assembling peptide hydrogel for the co-delivery of doxorubicin and curcumin was assessed against head and neck cancer cells. The dual loaded peptide hydrogel enabled control over the rate of drug release based on drug's aqueous solubility. A significantly enhanced cell growth inhibitory effect was observed after treatment with the combination drug-loaded hydrogel formulations compared to the respective combination drug solution. The synergistic pharmacological effect of selected hydrogel formulations was further confirmed with enhanced apoptotic cell response, interference in cell cycle progression, and significantly altered apoptotic/anti-apoptotic gene expression profiles obtained in dose levels well below the half-maximal inhibitory concentrations of both drugs. The in vivo antitumor efficacy of the drug-loaded peptide hydrogel formulation was confirmed in HSC-3 cell-xenografted severe combined immunodeficient mice and visualized with µCT imaging. Histological and terminal deoxynucleotidyl transferase dUTP nick end labeling assay analyses of major organs were implemented to assess the safety of the topically administered hydrogel formulation. Overall, results demonstrated the therapeutic utility of the dual drug-loaded peptide hydrogel as a pertinent approach for the local treatment of head and neck cancer.


Asunto(s)
Curcumina/uso terapéutico , Doxorrubicina/uso terapéutico , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Hidrogeles/química , Péptidos/química , Animales , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Curcumina/química , Doxorrubicina/química , Sistemas de Liberación de Medicamentos/métodos , Femenino , Citometría de Flujo , Humanos , Ratones , Ratones SCID , Microscopía de Fuerza Atómica , Reología , Ensayos Antitumor por Modelo de Xenoinjerto
18.
AAPS PharmSciTech ; 20(2): 78, 2019 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-30635752

RESUMEN

Poor aqueous solubility and low bioavailability are limiting factors in the oral delivery of lipophilic drugs. In a formulation approach to overcome these limitations, rice bran (RB) oil was evaluated as drug carrier in the development of self-nanoemulsifying drug delivery systems (SNEDDS). The performance of RB in formulations incorporating Kolliphor RH40 or Kolliphor EL as surfactants and Transcutol HP as cosolvent was compared to a common oil vehicle, corn oil (CO). Serial dilutions of the preconcentrates were performed in various media [distilled water and simulated intestinal fluids mimicking fasted state (FaSSIF) and fed state (FeSSIF)] and at different dilution ratios to simulate the in vivo droplets' behavior. The developed SNEDDS were assessed by means of phase separation, droplet size, polydispersity index, and ζ-potential. Complex ternary diagrams were constructed to identify compositions exhibiting monophasic behavior, droplet size < 100 nm, and polydispersity index (PDI) < 0.25. Multifactor analysis and response surface areas intended to determine the factors significantly affecting droplet size. The oil capacity to accommodate lipophilic drugs was assessed via fluorescence spectroscopy based on the solvatochromic behavior of Nile Red. Solubility studies were performed to prepare fenofibrate- and itraconazole-loaded SNEDDS and assess their droplet size, whereas dissolution experiments were conducted in simulated intestinal fluids. Caco-2 cell viability studies confirmed the safety of the SNEDDS formulations at 1:100 and 1:1000 dilutions after cell exposure in culture for 4 h. The obtained results showed similar performance between RB and CO supporting the potential of RB as oil vehicle for the effective oral delivery of lipophilic compounds.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Emulsionantes/química , Nanopartículas/química , Aceite de Salvado de Arroz/química , Disponibilidad Biológica , Células CACO-2 , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/química , Emulsionantes/administración & dosificación , Excipientes/administración & dosificación , Excipientes/química , Humanos , Nanopartículas/administración & dosificación , Tamaño de la Partícula , Aceite de Salvado de Arroz/administración & dosificación , Solubilidad , Tensoactivos/química , Agua/química
19.
Langmuir ; 34(11): 3438-3448, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29486562

RESUMEN

Toward engineering approaches that are designed to optimize the particle size, morphology, and mucoadhesion behavior of the particulate component of inhaler formulations, this paper presents the preparation, physicochemical characterization, and preliminary in vitro evaluation of multicomponent polymer-lipid systems that are based on "spray-drying engineered" α-lactose monohydrate microparticles. The formulations combine an active (budesonide) with a lung surfactant (dipalmitoylphosphatidylcholine) and with materials that are known for their desirable effects on morphology (polyvinyl alcohol), aerosolization (l-leucine), and mucoadhesion (chitosan). The effect of the composition of formulations on the morphology, distribution, and in vitro mucoadhesion profiles is presented along with "Calu-3 cell monolayers" data that indicate good cytocompatibility and also with simulated-lung-fluid data that are consistent with the therapeutically useful release of budesonide.


Asunto(s)
Budesonida/química , Portadores de Fármacos/química , Excipientes/química , Lactosa/química , Alcohol Polivinílico/química , 1,2-Dipalmitoilfosfatidilcolina/química , 1,2-Dipalmitoilfosfatidilcolina/toxicidad , Administración por Inhalación , Línea Celular Tumoral , Quitosano/química , Quitosano/toxicidad , Portadores de Fármacos/toxicidad , Composición de Medicamentos , Liberación de Fármacos , Excipientes/toxicidad , Femenino , Humanos , Lactosa/toxicidad , Leucina/química , Leucina/toxicidad , Masculino , Moco/química , Tamaño de la Partícula , Alcohol Polivinílico/toxicidad , Surfactantes Pulmonares/química , Surfactantes Pulmonares/toxicidad
20.
Pharm Res ; 35(8): 166, 2018 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-29943122

RESUMEN

PURPOSE: Localized chemotherapy has gained significant impetus for the management of malignant brain tumors. In the present study, we appraised the versatility of an in-situ gel forming self-assembling peptide, ac-(RADA)4-CONH2, as a biocompatible delivery depot of the chemotherapeutic drug doxorubicin (DOX) and the anticancer agent curcumin (CUR), respectively. METHODS: The morphology and mechanical properties of ac-(RADA)4-CONH2 were assessed with scanning electron microscopy (SEM) and rheological studies. The in vitro drug release from ac-(RADA)4-CONH2 was monitored in phosphate-buffered saline pH 7.4. Distribution of the fluorescent actives within the peptide matrix was visualized with confocal laser scanning microscopy (CLSM). The in vitro biological performance of the ac-(RADA)4-CONH2-DOX and ac-(RADA)4-CONH2-CUR was evaluated on the human glioblastoma U-87 MG cell line. RESULTS: SEM studies revealed that the ac-(RADA)4-CONH2 hydrogel contains an entangled nanofiber network. Rheology studies showed that the more hydrophobic CUR resulted in a stiffer hydrogel compared with ac-(RADA)4-CONH2 and ac-(RADA)4-CONH2-DOX, due to the interaction of CUR with the hydrophobic domains of the peptide nanofibers as confirmed by CLSM. In vitro release studies showed a complete DOX release from ac-(RADA)4-CONH2 within 4 days and a prolonged release for ac-(RADA)4-CONH2-CUR over 20 days. An increased cellular uptake and a higher cytotoxic effect were observed for ac-(RADA)4-CONH2-DOX, compared with DOX solution. Higher levels of early apoptosis were observed for the cells treated with the ac-(RADA)4-CONH2-CUR, compared to CUR solution. CONCLUSIONS: The current findings highlight the potential utility of the in-situ depot forming ac-(RADA)4-CONH2 hydrogel for the local delivery of both water soluble and insoluble chemotherapeutic drugs.


Asunto(s)
Antineoplásicos/administración & dosificación , Neoplasias Encefálicas/tratamiento farmacológico , Curcumina/administración & dosificación , Doxorrubicina/administración & dosificación , Portadores de Fármacos/química , Glioblastoma/tratamiento farmacológico , Nanofibras/química , Péptidos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Curcumina/farmacocinética , Curcumina/farmacología , Doxorrubicina/farmacocinética , Doxorrubicina/farmacología , Liberación de Fármacos , Humanos , Hidrogeles/química , Nanofibras/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA