Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Oncoimmunology ; 13(1): 2351255, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38737792

RESUMEN

Immune checkpoint inhibitors (ICI) are increasingly used in combination. To understand the effects of different ICI categories, we characterized changes in circulating autoantibodies in patients enrolled in the E4412 trial (NCT01896999) of brentuximab vedotin (BV) plus ipilimumab, BV plus nivolumab, or BV plus ipilimumab-nivolumab for Hodgkin Lymphoma. Cycle 2 Day 1 (C2D1) autoantibody levels were compared to pre-treatment baseline. Across 112 autoantibodies tested, we generally observed increases in ipilimumab-containing regimens, with decreases noted in the nivolumab arm. Among 15 autoantibodies with significant changes at C2D1, all nivolumab cases exhibited decreases, with more than 90% of ipilimumab-exposed cases showing increases. Autoantibody profiles also showed differences according to immune-related adverse event (irAE) type, with rash generally featuring increases and liver toxicity demonstrating decreases. We conclude that dynamic autoantibody profiles may differ according to ICI category and irAE type. These findings may have relevance to clinical monitoring and irAE treatment.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Autoanticuerpos , Brentuximab Vedotina , Inhibidores de Puntos de Control Inmunológico , Ipilimumab , Nivolumab , Humanos , Autoanticuerpos/sangre , Autoanticuerpos/inmunología , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Nivolumab/efectos adversos , Nivolumab/administración & dosificación , Ipilimumab/efectos adversos , Ipilimumab/administración & dosificación , Brentuximab Vedotina/uso terapéutico , Femenino , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Enfermedad de Hodgkin/tratamiento farmacológico , Enfermedad de Hodgkin/inmunología , Masculino , Persona de Mediana Edad , Adulto , Anciano
2.
Front Immunol ; 15: 1351739, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38690281

RESUMEN

Background: A useful clinical biomarker requires not only association but also a consistent temporal relationship. For instance, chemotherapy-induced neutropenia and epidermal growth-factor inhibitor-related acneiform rash both occur within weeks of treatment initiation, thereby providing information prior to efficacy assessment. Although immune checkpoint inhibitor (ICI)-associated immune-related adverse events (irAE) have been associated with therapeutic benefit, irAE may have delayed and highly variable onset. To determine whether ICI efficacy and irAE could serve as clinically useful biomarkers for predicting each other, we determined the temporal relationship between initial efficacy assessment and irAE onset in a diverse population treated with ICI. Methods: Using two-sided Fisher exact and Cochran-Armitage tests, we determined the relative timing of initial efficacy assessment and irAE occurrence in a cohort of 155 ICI-treated patients (median age 68 years, 40% women). Results: Initial efficacy assessment was performed a median of 50 days [interquartile range (IQR) 39-59 days] after ICI initiation; median time to any irAE was 77 days (IQR 28-145 days) after ICI initiation. Median time to first irAE was 42 days (IQR 20-88 days). Overall, 58% of any irAE and 47% of first irAE occurred after initial efficacy assessment. For clinically significant (grade ≥2) irAE, 60% of any and 53% of first occurred after initial efficacy assessment. The likelihood of any future irAE did not differ according to response (45% for complete or partial response vs. 47% for other cases; P=1). In landmark analyses controlling for clinical and toxicity follow-up, patients demonstrating greater tumor shrinkage at initial efficacy assessment were more likely to develop future grade ≥2 (P=0.05) and multi-organ (P=0.02) irAE. Conclusions: In contrast to that seen with chemotherapy and molecularly targeted therapies, the temporal relationship between ICI efficacy and toxicity is complex and bidirectional. In practice, neither parameter can be routinely relied on as a clinical biomarker to predict the other.


Asunto(s)
Biomarcadores , Inhibidores de Puntos de Control Inmunológico , Neoplasias , Humanos , Femenino , Masculino , Anciano , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Persona de Mediana Edad , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Neoplasias/terapia , Inmunoterapia/efectos adversos , Inmunoterapia/métodos , Resultado del Tratamiento , Factores de Tiempo
3.
bioRxiv ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39005456

RESUMEN

The interaction between antigens and antibodies (B cell receptors, BCRs) is the key step underlying the function of the humoral immune system in various biological contexts. The capability to profile the landscape of antigen-binding affinity of a vast number of BCRs will provide a powerful tool to reveal novel insights at unprecedented levels and will yield powerful tools for translational development. However, current experimental approaches for profiling antibody-antigen interactions are costly and time-consuming, and can only achieve low-to-mid throughput. On the other hand, bioinformatics tools in the field of antibody informatics mostly focus on optimization of antibodies given known binding antigens, which is a very different research question and of limited scope. In this work, we developed an innovative Artificial Intelligence tool, Cmai, to address the prediction of the binding between antibodies and antigens that can be scaled to high-throughput sequencing data. Cmai achieved an AUROC of 0.91 in our validation cohort. We devised a biomarker metric based on the output from Cmai applied to high-throughput BCR sequencing data. We found that, during immune-related adverse events (irAEs) caused by immune-checkpoint inhibitor (ICI) treatment, the humoral immunity is preferentially responsive to intracellular antigens from the organs affected by the irAEs. In contrast, extracellular antigens on malignant tumor cells are inducing B cell infiltrations, and the infiltrating B cells have a greater tendency to co-localize with tumor cells expressing these antigens. We further found that the abundance of tumor antigen-targeting antibodies is predictive of ICI treatment response. Overall, Cmai and our biomarker approach filled in a gap that is not addressed by current antibody optimization works nor works such as AlphaFold3 that predict the structures of complexes of proteins that are known to bind.

4.
bioRxiv ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38915535

RESUMEN

Introduction: Racial and ethnic disparities in the presentation and outcomes of lung cancer are widely known. To evaluate potential factors contributing to these observations, we measured systemic immune parameters in Black and White patients with lung cancer. Methods: Patients scheduled to receive cancer immunotherapy were enrolled in a multi-institutional prospective biospecimen collection registry. Clinical and demographic information were obtained from electronic medical records. Pre-treatment peripheral blood samples were collected and analyzed for cytokines using a multiplex panel and for immune cell populations using mass cytometry. Differences between Black and White patients were determined and corrected for multiple comparisons. Results: A total of 187 patients with non-small cell lung cancer (Black, 19; White, 168) were included in the analysis. There were no significant differences in baseline characteristics between Black and White patients. Compared to White patients, Black patients had significantly lower levels of CCL23 and CCL27, and significantly higher levels of CCL8, CXCL1, CCL26, CCL25, CCL1, IL-1 b, CXCL16, and IFN-γ (all P <0.05, FDR<0.1). Black patients also exhibited greater populations of non-classical CD16+ monocytes, NKT-like cells, CD4+ cells, CD38+ monocytes, and CD57+ gamma delta T cells (all P <0.05). Conclusions: Black and White patients with lung cancer exhibit several differences in immune parameters, with Black patients exhibiting greater levels of numerous pro-inflammatory cytokines and cell populations. The etiology and clinical significance of these differences warrant further evaluation.

5.
bioRxiv ; 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38105939

RESUMEN

Profiling the binding of T cell receptors (TCRs) of T cells to antigenic peptides presented by MHC proteins is one of the most important unsolved problems in modern immunology. Experimental methods to probe TCR-antigen interactions are slow, labor-intensive, costly, and yield moderate throughput. To address this problem, we developed pMTnet-omni, an Artificial Intelligence (AI) system based on hybrid protein sequence and structure information, to predict the pairing of TCRs of αß T cells with peptide-MHC complexes (pMHCs). pMTnet-omni is capable of handling peptides presented by both class I and II pMHCs, and capable of handling both human and mouse TCR-pMHC pairs, through information sharing enabled this hybrid design. pMTnet-omni achieves a high overall Area Under the Curve of Receiver Operator Characteristics (AUROC) of 0.888, which surpasses competing tools by a large margin. We showed that pMTnet-omni can distinguish binding affinity of TCRs with similar sequences. Across a range of datasets from various biological contexts, pMTnet-omni characterized the longitudinal evolution and spatial heterogeneity of TCR-pMHC interactions and their functional impact. We successfully developed a biomarker based on pMTnet-omni for predicting immune-related adverse events of immune checkpoint inhibitor (ICI) treatment in a cohort of 57 ICI-treated patients. pMTnet-omni represents a major advance towards developing a clinically usable AI system for TCR-pMHC pairing prediction that can aid the design and implementation of TCR-based immunotherapeutics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA