Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Pathog ; 18(6): e1010593, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35658055

RESUMEN

Flaviviruses, which are globally distributed and cause a spectrum of potentially severe illnesses, pose a major threat to public health. Although Flaviviridae viruses, including flaviviruses, possess similar genome structures, only the flaviviruses encode the non-structural protein NS1, which resides in the endoplasmic reticulum (ER) and is secreted from cells after oligomerization. The ER-resident NS1 is known to be involved in viral genome replication, but the essential roles of secretory NS1 in the virus life cycle are not fully understood. Here we characterized the roles of secretory NS1 in the particle formation of flaviviruses. We first identified an amino acid residue essential for the NS1 secretion but not for viral genome replication by using protein-protein interaction network analyses and mutagenesis scanning. By using the recombinant flaviviruses carrying the identified NS1 mutation, we clarified that the mutant flaviviruses employed viral genome replication. We then constructed a recombinant NS1 with the identified mutation and demonstrated by physicochemical assays that the mutant NS1 was unable to form a proper oligomer or associate with liposomes. Finally, we showed that the functions of NS1 that were lost by the identified mutation could be compensated for by the in trans-expression of Erns of pestiviruses and host exchangeable apolipoproteins, which participate in the infectious particle formation of pestiviruses and hepaciviruses in the family Flaviviridae, respectively. Collectively, our study suggests that secretory NS1 plays a role in the particle formation of flaviviruses through its interaction with the lipid membrane.


Asunto(s)
Flaviviridae , Flavivirus , Flavivirus/genética , Flavivirus/metabolismo , Glicoproteínas , Proteínas no Estructurales Virales/metabolismo , Replicación Viral
2.
PLoS Pathog ; 16(6): e1008308, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32574204

RESUMEN

One of the determinants for tissue tropism of hepatitis C virus (HCV) is miR-122, a liver-specific microRNA. Recently, it has been reported that interaction of miR-122 to HCV RNA induces a conformational change of the 5'UTR internal ribosome entry site (IRES) structure to form stem-loop II structure (SLII) and hijack of translating 80S ribosome through the binding of SLIII to 40S subunit, which leads to efficient translation. On the other hand, low levels of HCV-RNA replication have also been detected in some non-hepatic cells; however, the details of extrahepatic replication remain unknown. These observations suggest the possibility that miRNAs other than miR-122 can support efficient replication of HCV-RNA in non-hepatic cells. Here, we identified a number of such miRNAs and show that they could be divided into two groups: those that bind HCV-RNA at two locations (miR-122 binding sites I and II), in a manner similar to miR-122 (miR-122-like), and those that target a single site that bridges sites I and II and masking both G28 and C29 in the 5'UTR (non-miR-122-like). Although the enhancing activity of these non-hepatic miRNAs were lower than those of miR-122, substantial expression was detected in various normal tissues. Furthermore, structural modeling indicated that both miR-122-like and non-miR-122-like miRNAs not only can facilitate the formation of an HCV IRES SLII but also can stabilize IRES 3D structure in order to facilitate binding of SLIII to the ribosome. Together, these results suggest that HCV facilitates miR-122-independent replication in non-hepatic cells through recruitment of miRNAs other than miR-122. And our findings can provide a more detailed mechanism of miR-122-dependent enhancement of HCV-RNA translation by focusing on IRES tertiary structure.


Asunto(s)
Regulación Viral de la Expresión Génica , Hepacivirus/fisiología , MicroARNs/metabolismo , Biosíntesis de Proteínas , ARN Viral , Proteínas Virales/biosíntesis , Replicación Viral/fisiología , Regiones no Traducidas 5' , Línea Celular Tumoral , Humanos , MicroARNs/genética , ARN Viral/biosíntesis , ARN Viral/genética , Proteínas Virales/genética
3.
J Virol ; 93(22)2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31462560

RESUMEN

Recombinant viruses possessing reporter proteins have been generated for virus research. In the case of the family Flaviviridae, we recently generated recombinant viruses, including the hepatitis C virus of the genus Hepacivirus, Japanese encephalitis virus (JEV) of the genus Flavivirus, and bovine viral diarrhea virus of the genus Pestivirus; all three viruses possess an 11-amino-acid subunit derived from NanoLuc luciferase (HiBiT). Here, we further developed the recombinant viruses and investigated their utility in vivo Recombinant viruses harboring HiBiT in the E, NS1, or NS3 protein constructed based on the predicted secondary structure, solvent-accessible surface area, and root mean square fluctuation of the proteins exhibited comparable replication to that of the wild-type virus in vitro The recombinant JEV carrying HiBiT in the NS1 protein exhibited propagation in mice comparable to that of the parental virus, and propagation of the recombinant was monitored by the luciferase activity. In addition, the recombinants of classical swine fever virus (CSFV) possessing HiBiT in the Erns or E2 protein also showed propagation comparable to that of the wild-type virus. The recombinant CSFV carrying HiBiT in Erns exhibited similar replication to the parental CSFV in pigs, and detection of viral propagation of this recombinant by luciferase activity was higher than that by quantitative PCR (qPCR). Taken together, these results demonstrated that the reporter Flaviviridae viruses generated herein are powerful tools for elucidating the viral life cycle and pathogeneses and provide a robust platform for the development of novel antivirals.IMPORTANCEIn vivo applications of reporter viruses are necessary to understand viral pathogenesis and provide a robust platform for antiviral development. In developing such applications, determination of an ideal locus to accommodate foreign genes is important, because insertion of foreign genes into irrelevant loci can disrupt the protein functions required for viral replication. Here, we investigated the criteria to determine ideal insertion sites of foreign genes from the protein structure of viral proteins. The recombinant viruses generated by our criteria exhibited propagation comparable to that of parental viruses in vivo Our proteomic approach based on the flexibility profile of viral proteins may provide a useful tool for constructing reporter viruses, including Flaviviridae viruses.


Asunto(s)
Flaviviridae/genética , Flaviviridae/metabolismo , Ingeniería de Proteínas/métodos , Animales , Línea Celular , Flaviviridae/patogenicidad , Infecciones por Flaviviridae/metabolismo , Genes Reporteros/genética , Genes Virales/genética , Células HEK293 , Humanos , Ratones/virología , Proteómica/métodos , ARN Helicasas/genética , ARN Helicasas/metabolismo , Proteínas Recombinantes/metabolismo , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Porcinos/virología , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/efectos de los fármacos
4.
Microbiol Immunol ; 64(5): 345-355, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31981244

RESUMEN

Chronic infection with hepatitis B virus (HBV) sometime induces lethal cirrhosis and hepatocellular carcinoma. Although nucleot(s)ide analogs are used as main treatment for HBV infection, the emergence of the drug-resistant viruses has become a problem. To discover novel antivirals with low side effects and low risk of emergence of resistant viruses, screening for anti-HBV compounds was performed with compound libraries of inhibitors targeting G-protein-coupled receptors (GPCRs). HepG2-hNTCP C4 cells infected with HBV were treated with various GPCR inhibitors and harvested at 14 day postinfection for quantification of core protein in the first screening or relaxed circular DNA in the second screening. Finally, we identified a cannabinoid receptor 1 inhibitor, rimonabant, as a candidate showing anti-HBV effect. In HepG2-hNTCP C4 cells, treatment with rimonabant suppressed HBV propagation at the viral RNA transcription step but had no effect on entry or covalently closed circular DNA level. The values of half maximal inhibitory concentration, half maximal effective concentration, and selectivity index of rimonabant in primary human hepatocyte (PHH) are 2.77 µm, 40.4 µm, and 14.6, respectively. Transcriptome analysis of rimonabant-treated primary hepatocytes by RNA sequencing revealed that the transcriptional activity of hepatocyte nuclear factor 4α (HNF4α), which is known to stimulate viral RNA synthesis, was depressed. By treatment of PHH with rimonabant, the expression level of HNF4α protein and the production of the messenger RNAs (mRNAs) of downstream factors promoted by HNF4α were reduced while the amount of HNF4α mRNA was not altered. These results suggest that treatment with rimonabant suppresses HBV propagation through the inhibition of HNF4α activity.


Asunto(s)
Antivirales/farmacología , Virus de la Hepatitis B/efectos de los fármacos , Factor Nuclear 4 del Hepatocito/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Rimonabant/farmacología , Replicación Viral/efectos de los fármacos , Descubrimiento de Drogas , Células Hep G2 , Virus de la Hepatitis B/fisiología , Hepatocitos/efectos de los fármacos , Hepatocitos/patología , Humanos , ARN Mensajero/metabolismo , ARN Viral/metabolismo
5.
J Virol ; 92(2)2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29093094

RESUMEN

The family Flaviviridae consists of four genera, Flavivirus, Pestivirus, Pegivirus, and Hepacivirus, and comprises important pathogens of human and animals. Although the construction of recombinant viruses carrying reporter genes encoding fluorescent and bioluminescent proteins has been reported, the stable insertion of foreign genes into viral genomes retaining infectivity remains difficult. Here, we applied the 11-amino-acid subunit derived from NanoLuc luciferase to the engineering of the Flaviviridae viruses and then examined the biological characteristics of the viruses. We successfully generated recombinant viruses carrying the split-luciferase gene, including dengue virus, Japanese encephalitis virus, hepatitis C virus (HCV), and bovine viral diarrhea virus. The stability of the viruses was confirmed by five rounds of serial passages in the respective susceptible cell lines. The propagation of the recombinant luciferase viruses in each cell line was comparable to that of the parental viruses. By using a purified counterpart luciferase protein, this split-luciferase assay can be applicable in various cell lines, even when it is difficult to transduce the counterpart gene. The efficacy of antiviral reagents against the recombinant viruses could be monitored by the reduction of luciferase expression, which was correlated with that of viral RNA, and the recombinant HCV was also useful to examine viral dynamics in vivo Taken together, our findings indicate that the recombinant Flaviviridae viruses possessing the split NanoLuc luciferase gene generated here provide powerful tools to understand viral life cycle and pathogenesis and a robust platform to develop novel antivirals against Flaviviridae viruses.IMPORTANCE The construction of reporter viruses possessing a stable transgene capable of expressing specific signals is crucial to investigations of viral life cycle and pathogenesis and the development of antivirals. However, it is difficult to maintain the stability of a large foreign gene, such as those for fluorescence and bioluminescence, after insertion into a viral genome. Here, we successfully generated recombinant Flaviviridae viruses carrying the 11-amino-acid subunit derived from NanoLuc luciferase and demonstrated that these viruses are applicable to in vitro and in vivo experiments, suggesting that these recombinant Flaviviridae viruses are powerful tools for increasing our understanding of viral life cycle and pathogenesis and that these recombinant viruses will provide a robust platform to develop antivirals against Flaviviridae viruses.


Asunto(s)
Flaviviridae/genética , Expresión Génica , Genes Reporteros , Recombinación Genética , Animales , Antivirales/farmacología , Línea Celular , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos , Flaviviridae/efectos de los fármacos , Genoma Viral , Hepacivirus/genética , Humanos , Ratones , Mutagénesis Insercional
6.
PLoS Pathog ; 13(5): e1006374, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28494029

RESUMEN

miR-122, a liver-specific microRNA, is one of the determinants for liver tropism of hepatitis C virus (HCV) infection. Although miR-122 is required for efficient propagation of HCV, we have previously shown that HCV replicates at a low rate in miR-122-deficient cells, suggesting that HCV-RNA is capable of propagating in an miR-122-independent manner. We herein investigated the roles of miR-122 in both the replication of HCV-RNA and the production of infectious particles by using miR-122-knockout Huh7 (Huh7-122KO) cells. A slight increase of intracellular HCV-RNA levels and infectious titers in the culture supernatants was observed in Huh7-122KO cells upon infection with HCV. Moreover, after serial passages of HCV in miR-122-knockout Huh7.5.1 cells, we obtained an adaptive mutant, HCV122KO, possessing G28A substitution in the 5'UTR of the HCV genotype 2a JFH1 genome, and this mutant may help to enhance replication complex formation, a possibility supported by polysome analysis. We also found the introduction of adaptive mutation around miR-122 binding site in the genotype 1b/2a chimeric virus, which originally had an adenine at the nucleotide position 29. HCV122KO exhibited efficient RNA replication in miR-122-knockout cells and non-hepatic cells without exogenous expression of miR-122. Competition assay revealed that the G28A mutant was dominant in the absence of miR-122, but its effects were equivalent to those of the wild type in the presence of miR-122, suggesting that the G28A mutation does not confer an advantage for propagation in miR-122-rich hepatocytes. These observations may explain the clinical finding that the positive rate of G28A mutation was higher in miR-122-deficient PBMCs than in the patient serum, which mainly included the hepatocyte-derived virus from HCV-genotype-2a patients. These results suggest that the emergence of HCV mutants that can propagate in non-hepatic cells in an miR-122-independent manner may participate in the induction of extrahepatic manifestations in chronic hepatitis C patients.


Asunto(s)
Hepacivirus/fisiología , Hepatitis C/virología , MicroARNs/genética , Replicación Viral , Regiones no Traducidas 5'/genética , Línea Celular Tumoral , Hepacivirus/genética , Hepatocitos/virología , Humanos , Hígado/metabolismo , Hígado/virología , MicroARNs/metabolismo , Mutación , Especificidad de Órganos , ARN Viral/genética
7.
J Gen Virol ; 99(12): 1643-1657, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30311874

RESUMEN

Hepatitis C virus (HCV) infection is known to induce autophagy, but the mechanism of autophagy induced by HCV remains controversial. Here, we investigated the characteristics of autophagy induced by HCV infection. First, to examine the involvement of autophagy-related gene (ATG) proteins in HCV-induced LC3 lipidation, we established ATG5, ATG13 or ATG14 knockout (KO) Huh7.5.1 cell lines and confirmed that the accumulation of lipidated LC3 was induced in an ATG13- and ATG14-independent manner. On the other hand, HCV infectivity was not influenced by deficiencies in these genes. We also confirmed that LC3-positive dots were co-localized with ubiquitinated aggregates, and deficiency of ATG5 or ATG14 enhanced the accumulation of ubiquitinated aggregates compared to that in the restored cells, suggesting that HCV infection induces ATG5- and ATG14-dependent selective autophagy. Moreover, LC3-positive ubiquitinated aggregates accumulated near the site of the replication complex. We further examined autophagy flux in cells replicating HCV RNA using bafilomycin or E64d, and found that the increase of LC3 lipidation by treatment with bafilomycin or E64d was impaired in HCV-replicating cells, suggesting that autophagy flux is inhibited by the progress of HCV infection. Our present study suggests that (1) HCV RNA replication induces selective autophagy and (2) the progress of HCV infection impairs autophagy flux.


Asunto(s)
Autofagia , Hepacivirus/crecimiento & desarrollo , Hepacivirus/inmunología , Hepatocitos/virología , Replicación Viral , Proteínas Relacionadas con la Autofagia/metabolismo , Línea Celular , Humanos , Lactosilceramidos/metabolismo
8.
Sci Rep ; 14(1): 17634, 2024 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-39085360

RESUMEN

Self-amplifying RNAs (saRNAs) are versatile vaccine platforms that take advantage of a viral RNA-dependent RNA polymerase (RdRp) to amplify the messenger RNA (mRNA) of an antigen of interest encoded within the backbone of the viral genome once inside the target cell. In recent years, more saRNA vaccines have been clinically tested with the hope of reducing the vaccination dose compared to the conventional mRNA approach. The use of N1-methyl-pseudouridine (1mΨ), which enhances RNA stability and reduces the innate immune response triggered by RNAs, is among the improvements included in the current mRNA vaccines. In the present study, we evaluated the effects of this modified nucleoside on various saRNA platforms based on different viruses. The results showed that different stages of the replication process were affected depending on the backbone virus. For TNCL, an insect virus of the Alphanodavirus genus, replication was impaired by poor recognition of viral RNA by RdRp. In contrast, the translation step was severely abrogated in coxsackievirus B3 (CVB3), a member of the Picornaviridae family. Finally, the effects of 1mΨ on Semliki forest virus (SFV), were not detrimental in in vitro studies, but no advantages were observed when immunogenicity was tested in vivo.


Asunto(s)
ARN Viral , Replicación Viral , ARN Viral/genética , Animales , Replicón/genética , Seudouridina/metabolismo , Virus ARN Monocatenarios Positivos/genética , Humanos , Virus de los Bosques Semliki/genética , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Estabilidad del ARN , Enterovirus Humano B/genética , Enterovirus Humano B/fisiología
9.
Cell Rep ; 35(3): 109014, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33838744

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been identified as the causative agent of coronavirus disease 2019 (COVID-19). Although multiple mutations have been observed in SARS-CoV-2, functional analysis of each mutation of SARS-CoV-2 has been limited by the lack of convenient mutagenesis methods. In this study, we establish a PCR-based, bacterium-free method to generate SARS-CoV-2 infectious clones. Recombinant SARS-CoV-2 could be rescued at high titer with high accuracy after assembling 10 SARS-CoV-2 cDNA fragments by circular polymerase extension reaction (CPER) and transfection of the resulting circular genome into susceptible cells. The construction of infectious clones for reporter viruses and mutant viruses could be completed in two simple steps: introduction of reporter genes or mutations into the desirable DNA fragments (∼5,000 base pairs) by PCR and assembly of the DNA fragments by CPER. This reverse genetics system may potentially advance further understanding of SARS-CoV-2.


Asunto(s)
COVID-19/genética , Genética Inversa , SARS-CoV-2/genética , Animales , Cricetinae , Células HEK293 , Humanos
10.
Antiviral Res ; 186: 104999, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33346055

RESUMEN

The discovery of novel antivirals to treat hepatitis B virus (HBV) infection is urgently needed, as the currently available drugs mainly target viral proteins at replication step, whereas host factors also play significant roles in HBV infection. Although numerous studies have reported candidate drugs for HBV treatment, there remains a need to find a new drug that may target other steps of the HBV life cycle. In this study, by drug screening of a 533 G-protein-coupled receptors (GPCRs)-associated compound library, we identified ponesimod, a selective agonist of sphingosine-1-phosphate receptor 1 (S1P1), as a drug candidate for the suppression of HBV infection. However, the anti-HBV effect of ponesimod is independent of S1P1 and other sphingosine-1-phosphate receptors (S1PRs). Treatment with ponesimod at an early step of infection but not at a post-entry step significantly reduced the HBV relaxed circular DNA (rcDNA) level in a dose-dependent manner. Ponesimod treatment did not inhibit attachment, binding, or internalization of HBV particles via endocytosis through an interaction with sodium taurocholate cotransporting polypeptide (NTCP) or epidermal growth factor receptor (EGFR). Importantly, during the transportation of HBV particles to the nucleus, co-localization of HBV with early endosomes but not with late endosomes and lysosomes was induced by the treatment with ponesimod, suggesting that ponesimod interferes with the conversion of early endosomes to late endosomes without significant damage to cellular growth. Conclusion: Ponesimod is a promising anti-HBV drug targeting the endosome maturation of HBV. This finding can be applied to the development of novel antivirals that target the trafficking pathway of HBV particles.


Asunto(s)
Antivirales/farmacología , Endosomas/efectos de los fármacos , Virus de la Hepatitis B/efectos de los fármacos , Tiazoles/farmacología , ADN Viral/genética , Endosomas/fisiología , Células HEK293 , Células Hep G2 , Hepatitis B/tratamiento farmacológico , Hepatitis B/virología , Hepatocitos/efectos de los fármacos , Hepatocitos/virología , Humanos , Receptores de Esfingosina-1-Fosfato/agonistas , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA