Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Heliyon ; 6(1): e03194, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31989050

RESUMEN

The properties of the conduction band energy states of an electron interacting with a donor impurity center in spherical sector-shaped GaAs-Al0.3Ga0.7As quantum dots are theoretically investigated. The study is performed within the framework of the effective mass approximation through the numerical solution of the 3D Schrödinger equation for the envelope function via the finite element method. The modifications undergone by the spectrum due to the changes in the conical structure geometry (radius and apical angle) as well as in the position of the donor atom are discussed. With the information regarding electron states the linear optical absorption coefficient associated with transition between confined energy levels is evaluated and its features are discussed. The comparison of results obtained within the considered model with available experimental data in GaAs truncated-whisker-like quantum dots shows very good agreement. Besides, our simulation leads to identify the lowest energy photoluminescence peak as donor-related, instead of being associated to acceptor atoms, as claimed after experimental measurement (Hiruma et al. (1995) [14]). Also, a checking of our numerical approach is performed by comparing with analytical solutions to the problem of a spherical cone-shaped GaN with infinite confinement and donor impurity located at the cone apex. Coincidence is found to be remarkable.

2.
Sci Rep ; 9(1): 1427, 2019 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-30723242

RESUMEN

The features of the electron energy spectrum in eccentric two-dimensional GaAs-AlGaAs quantum rings of circular shape are theoretically investigated taking into account the effect of externally applied magnetic and intense laser fields. Analytical expressions for the laser-dressed confining potential in this kind of quantum ring geometry are reported for the first time. Finite element method is used to solve the resulting single-particle effective mass two-dimensional partial differential equation. It is shown that the allowed level spectrum is greatly influence by the external probe as well as by the breaking of geometric symmetry related to the changes in eccentricity. In presence of an intense laser field, the conduction band confining profile suffers strong modifications along the structure, with an additional contribution to symmetry breaking. These modifications of electronic quantum states reflect in the intraband optical absorption. Accordingly, the features of the intraband transitions are discussed in detail, revealing the significant influence of the magnetic field strength and laser field intensity and polarization, together with eccentricity, in the allowing of ground-to-excited states transitions and their corresponding intensities.

3.
Sci Rep ; 8(1): 13299, 2018 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-30185886

RESUMEN

The electronic states in GaAs-AlxGa1-xAs elliptically-shaped quantum rings are theoretically investigated through the numerical solution of the effective mass band equation via the finite element method. The results are obtained for different sizes and geometries, including the possibility of a number of hill-shaped deformations that play the role of either connected or isolated quantum dots (hills), depending on the configuration chosen. The quantum ring transversal section is assumed to exhibit three different geometrical symmetries - squared, triangular and parabolic. The behavior of the allowed confined states as functions of the cross-section shape, the ring dimensions, and the number of hills-like structures are discussed in detail. The effective energy bandgap (photoluminescence peak with electron-hole correlation) is reported as well, as a function of the Al molar fraction.

4.
J Phys Condens Matter ; 22(37): 375301, 2010 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-21403190

RESUMEN

The effect of a lateral external electric field F on an exciton ground state in an InAs disc-shaped quantum dot has been studied using a variational method within the effective mass approximation. We consider that the radial dimension of the disc is very large compared to its height. This situation leads to separating the excitonic Hamiltonian into two independent parts: the lateral confinement which corresponds to a two-dimensional harmonic oscillator and an infinite square well in the growth direction. Our calculations show that the complete description of the lateral Stark shift requires both the linear and quadratic terms in F which explains that the exciton possess nonzero lateral dipolar moment and polarizability. The fit of the calculated Stark shift permits us to estimate the lateral permanent dipole moment and the polarizability according to the disc size. Our results are compared to those existing in the literature. In addition the behavior of the optical integral shows that the exciton lifetime is greater than that under zero field which is due to the field-induced polarization.


Asunto(s)
Arsenicales/química , Indio/química , Modelos Químicos , Nanoestructuras/química , Nanoestructuras/ultraestructura , Puntos Cuánticos , Campos Electromagnéticos , Tamaño de la Partícula , Teoría Cuántica
5.
Phys Rev B Condens Matter ; 35(9): 4331-4337, 1987 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-9941983
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA