Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 626(7998): 294-299, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38326595

RESUMEN

An essential ingredient for the production of Majorana fermions for use in quantum computing is topological superconductivity1,2. As bulk topological superconductors remain elusive, the most promising approaches exploit proximity-induced superconductivity3, making systems fragile and difficult to realize4-7. Due to their intrinsic topology8, Weyl semimetals are also potential candidates1,2, but have always been connected with bulk superconductivity, leaving the possibility of intrinsic superconductivity of their topological surface states, the Fermi arcs, practically without attention, even from the theory side. Here, by means of angle-resolved photoemission spectroscopy and ab initio calculations, we identify topological Fermi arcs on two opposing surfaces of the non-centrosymmetric Weyl material trigonal PtBi2 (ref. 9). We show these states become superconducting at temperatures around 10 K. Remarkably, the corresponding coherence peaks appear as the strongest and sharpest excitations ever detected by photoemission from solids. Our findings indicate that superconductivity in PtBi2 can occur exclusively at the surface, rendering it a possible platform to host Majorana modes in intrinsically topological superconductor-normal metal-superconductor Josephson junctions.

2.
Nature ; 603(7902): 610-615, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35322253

RESUMEN

The Fermi surface plays an important role in controlling the electronic, transport and thermodynamic properties of materials. As the Fermi surface consists of closed contours in the momentum space for well-defined energy bands, disconnected sections known as Fermi arcs can be signatures of unusual electronic states, such as a pseudogap1. Another way to obtain Fermi arcs is to break either the time-reversal symmetry2 or the inversion symmetry3 of a three-dimensional Dirac semimetal, which results in formation of pairs of Weyl nodes that have opposite chirality4, and their projections are connected by Fermi arcs at the bulk boundary3,5-12. Here, we present experimental evidence that pairs of hole- and electron-like Fermi arcs emerge below the Neel temperature (TN) in the antiferromagnetic state of cubic NdBi due to a new magnetic splitting effect. The observed magnetic splitting is unusual, as it creates bands of opposing curvature, which change with temperature and follow the antiferromagnetic order parameter. This is different from previous theoretically considered13,14 and experimentally reported cases15,16 of magnetic splitting, such as traditional Zeeman and Rashba, in which the curvature of the bands is preserved. Therefore, our findings demonstrate a type of magnetic band splitting in the presence of a long-range antiferromagnetic order that is not readily explained by existing theoretical ideas.

4.
Phys Rev Lett ; 128(3): 036402, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35119899

RESUMEN

The entanglement of charge density wave (CDW), superconductivity, and topologically nontrivial electronic structure has recently been discovered in the kagome metal AV_{3}Sb_{5} (A=K, Rb, Cs) family. With high-resolution angle-resolved photoemission spectroscopy, we study the electronic properties of CDW and superconductivity in CsV_{3}Sb_{5}. The spectra around K[over ¯] is found to exhibit a peak-dip-hump structure associated with two separate branches of dispersion, demonstrating the isotropic CDW gap opening below E_{F}. The peak-dip-hump line shape is contributed by linearly dispersive Dirac bands in the lower branch and a dispersionless flat band close to E_{F} in the upper branch. The electronic instability via Fermi surface nesting could play a role in determining these CDW-related features. The superconducting gap of ∼0.4 meV is observed on both the electron band around Γ[over ¯] and the flat band around K[over ¯], implying the multiband superconductivity. The finite density of states at E_{F} in the CDW phase is most likely in favor of the emergence of multiband superconductivity, particularly the enhanced density of states associated with the flat band. Our results not only shed light on the controversial origin of the CDW, but also offer insights into the relationship between CDW and superconductivity.

5.
Proc Natl Acad Sci U S A ; 116(32): 15907-15913, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31320588

RESUMEN

Mycobacterium tuberculosis (Mtb) is the etiological agent of tuberculosis. One-fourth of the global population is estimated to be infected with Mtb, accounting for ∼1.3 million deaths in 2017. As part of the immune response to Mtb infection, macrophages produce metabolites with the purpose of inhibiting or killing the bacterial cell. Itaconate is an abundant host metabolite thought to be both an antimicrobial agent and a modulator of the host inflammatory response. However, the exact mode of action of itaconate remains unclear. Here, we show that Mtb has an itaconate dissimilation pathway and that the last enzyme in this pathway, Rv2498c, also participates in l-leucine catabolism. Our results from phylogenetic analysis, in vitro enzymatic assays, X-ray crystallography, and in vivo Mtb experiments, identified Mtb Rv2498c as a bifunctional ß-hydroxyacyl-CoA lyase and that deletion of the rv2498c gene from the Mtb genome resulted in attenuation in a mouse infection model. Altogether, this report describes an itaconate resistance mechanism in Mtb and an l-leucine catabolic pathway that proceeds via an unprecedented (R)-3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) stereospecific route in nature.


Asunto(s)
Leucina/metabolismo , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/metabolismo , Succinatos/metabolismo , Aerosoles , Animales , Biocatálisis , Ligandos , Liasas/metabolismo , Malatos/metabolismo , Ratones Endogámicos C57BL , Filogenia , Proteínas Recombinantes/metabolismo , Estereoisomerismo , Tuberculosis/microbiología , Tuberculosis/patología
6.
Molecules ; 27(19)2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36235306

RESUMEN

Carbon nanomaterials endowed with significant luminescence have been synthesized for the first time from an abundant, highly localized waste, the wet pomace (WP), a semi-solid by-product of industrial olive oil production. Synthetic efforts were undertaken to outshine the photoluminescence (PL) of carbon nanoparticles through a systematic search of the best reaction conditions to convert the waste biomass, mainly consisting in holocellulose, lignin and proteins, into carbon dots (CDs) by hydrothermal carbonization processes. Blue-emitting CDs with high fluorescence quantum yields were obtained. Using a comprehensive set of spectroscopic tools (FTIR, Raman, XPS, and 1H/13C NMR) in combination with steady-state and time-resolved fluorescence spectroscopy, a rational depiction of WP-CDs structures and their PL properties was reached. WP-CDs show the up-conversion of PL capabilities and negligible cytotoxicity against two mammalian cell lines (L929 and HeLa). Both properties are excellent indicators for their prospective application in biological imaging, biosensing, and dynamic therapies driven by light.


Asunto(s)
Olea , Puntos Cuánticos , Animales , Carbono/química , Lignina , Luminiscencia , Mamíferos , Aceite de Oliva , Puntos Cuánticos/química
7.
Glob Chang Biol ; 27(12): 2822-2839, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33774862

RESUMEN

Permafrost thaw leads to thermokarst lake formation and talik growth tens of meters deep, enabling microbial decomposition of formerly frozen organic matter (OM). We analyzed two 17-m-long thermokarst lake sediment cores taken in Central Yakutia, Russia. One core was from an Alas lake in a Holocene thermokarst basin that underwent multiple lake generations, and the second core from a young Yedoma upland lake (formed ~70 years ago) whose sediments have thawed for the first time since deposition. This comparison provides a glance into OM fate in thawing Yedoma deposits. We analyzed total organic carbon (TOC) and dissolved organic carbon (DOC) content, n-alkane concentrations, and bacterial and archaeal membrane markers. Furthermore, we conducted 1-year-long incubations (4°C, dark) and measured anaerobic carbon dioxide (CO2 ) and methane (CH4 ) production. The sediments from both cores contained little TOC (0.7 ± 0.4 wt%), but DOC values were relatively high, with the highest values in the frozen Yedoma lake sediments (1620 mg L-1 ). Cumulative greenhouse gas (GHG) production after 1 year was highest in the Yedoma lake sediments (226 ± 212 µg CO2 -C g-1  dw, 28 ± 36 µg CH4 -C g-1  dw) and 3 and 1.5 times lower in the Alas lake sediments, respectively (75 ± 76 µg CO2 -C g-1  dw, 19 ± 29 µg CH4 -C g-1  dw). The highest CO2 production in the frozen Yedoma lake sediments likely results from decomposition of readily bioavailable OM, while highest CH4 production in the non-frozen top sediments of this core suggests that methanogenic communities established upon thaw. The lower GHG production in the non-frozen Alas lake sediments resulted from advanced OM decomposition during Holocene talik development. Furthermore, we found that drivers of CO2 and CH4 production differ following thaw. Our results suggest that GHG production from TOC-poor mineral deposits, which are widespread throughout the Arctic, can be substantial. Therefore, our novel data are relevant for vast ice-rich permafrost deposits vulnerable to thermokarst formation.


Asunto(s)
Gases de Efecto Invernadero , Lagos , Regiones Árticas , Biomarcadores , Lípidos , Metano/análisis , Federación de Rusia , Siberia
8.
Langmuir ; 37(33): 9952-9963, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34374545

RESUMEN

Lipid hydroperoxides are key mediators of diseases and cell death. In this work, the structural and dynamic perturbations induced by the hydroperoxidized POPC lipid (POPC-OOH) in fluid POPC membranes, at both 23 and 37 °C, were addressed using advanced small-angle X-ray scattering (SAXS) and fluorescence methodologies. Notably, SAXS reveals that the hydroperoxide group decreases the lipid bilayer bending rigidity. This alteration disfavors the bilayer stacking and increases the swelling in-between stacked bilayers. We further investigated the changes in the apolar/polar interface of hydroperoxide-containing membranes through time-resolved fluorescence/anisotropy experiments of the probe TMA-DPH and time-dependent fluorescence shifts of Laurdan. A shorter mean fluorescence lifetime for TMA-DPH was obtained in enriched POPC-OOH membranes, revealing a higher degree of hydration near the membrane interface. Moreover, a higher microviscosity near TMA-DPH and lower order are predicted for these oxidized membranes, at variance with the usual trend of variation of these two parameters. Finally, the complex relaxation process of Laurdan in pure POPC-OOH membranes also indicates a higher membrane hydration and viscosity in the close vicinity of the -OOH moiety. Altogether, our combined approach reveals that the hydroperoxide group promotes alterations in the membrane structure organization, namely, at the level of membrane order, viscosity, and bending rigidity.


Asunto(s)
Peróxidos Lipídicos , Fosfatidilcolinas , Polarización de Fluorescencia , Membrana Dobles de Lípidos , Dispersión del Ángulo Pequeño , Difracción de Rayos X
9.
Proc Natl Acad Sci U S A ; 115(15): 3912-3917, 2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29581255

RESUMEN

Ipilimumab, a monoclonal antibody that recognizes cytotoxic T lymphocyte antigen (CTLA)-4, was the first approved "checkpoint"-blocking anticancer therapy. In mouse tumor models, the response to antibodies against CTLA-4 depends entirely on expression of the Fcγ receptor (FcγR), which may facilitate antibody-dependent cellular phagocytosis, but the contribution of simple CTLA-4 blockade remains unknown. To understand the role of CTLA-4 blockade in the complete absence of Fc-dependent functions, we developed H11, a high-affinity alpaca heavy chain-only antibody fragment (VHH) against CTLA-4. The VHH H11 lacks an Fc portion, binds monovalently to CTLA-4, and inhibits interactions between CTLA-4 and its ligand by occluding the ligand-binding motif on CTLA-4 as shown crystallographically. We used H11 to visualize CTLA-4 expression in vivo using whole-animal immuno-PET, finding that surface-accessible CTLA-4 is largely confined to the tumor microenvironment. Despite this, H11-mediated CTLA-4 blockade has minimal effects on antitumor responses. Installation of the murine IgG2a constant region on H11 dramatically enhances its antitumor response. Coadministration of the monovalent H11 VHH blocks the efficacy of a full-sized therapeutic antibody. We were thus able to demonstrate that CTLA-4-binding antibodies require an Fc domain for antitumor effect.


Asunto(s)
Antígeno CTLA-4/inmunología , Fragmentos Fc de Inmunoglobulinas/administración & dosificación , Fragmentos de Inmunoglobulinas/administración & dosificación , Neoplasias/terapia , Animales , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Antígeno CTLA-4/química , Línea Celular Tumoral , Modelos Animales de Enfermedad , Humanos , Fragmentos Fc de Inmunoglobulinas/química , Fragmentos Fc de Inmunoglobulinas/inmunología , Fragmentos de Inmunoglobulinas/química , Fragmentos de Inmunoglobulinas/inmunología , Inmunoglobulina G/administración & dosificación , Inmunoglobulina G/inmunología , Inmunoterapia , Ratones , Ratones Endogámicos C57BL , Neoplasias/inmunología , Dominios Proteicos
10.
Sensors (Basel) ; 21(18)2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34577225

RESUMEN

In this paper, we used an EEG system to monitor and analyze the cortical activity of children and adults at a sensor level during cognitive tasks in the form of a Schulte table. This complex cognitive task simultaneously involves several cognitive processes and systems: visual search, working memory, and mental arithmetic. We revealed that adults found numbers on average two times faster than children in the beginning. However, this difference diminished at the end of table completion to 1.8 times. In children, the EEG analysis revealed high parietal alpha-band power at the end of the task. This indicates the shift from procedural strategy to less demanding fact-retrieval. In adults, the frontal beta-band power increased at the end of the task. It reflects enhanced reliance on the top-down mechanisms, cognitive control, or attentional modulation rather than a change in arithmetic strategy. Finally, the alpha-band power of adults exceeded one of the children in the left hemisphere, providing potential evidence for the fact-retrieval strategy. Since the completion of the Schulte table involves a whole set of elementary cognitive functions, the obtained results were essential for developing passive brain-computer interfaces for monitoring and adjusting a human state in the process of learning and solving cognitive tasks of various types.


Asunto(s)
Encéfalo , Electroencefalografía , Adulto , Atención , Niño , Cognición , Humanos , Memoria a Corto Plazo
11.
J Biol Chem ; 293(24): 9399-9411, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29700110

RESUMEN

Pulmonary surfactant is a lipid/protein mixture that reduces surface tension at the respiratory air-water interface in lungs. Among its nonlipidic components are pulmonary surfactant-associated proteins B and C (SP-B and SP-C, respectively). These highly hydrophobic proteins are required for normal pulmonary surfactant function, and whereas past literature works have suggested possible SP-B/SP-C interactions and a reciprocal modulation effect, no direct evidence has been yet identified. In this work, we report an extensive fluorescence spectroscopy study of both intramolecular and intermolecular SP-B and SP-C interactions, using a combination of quenching and FRET steady-state and time-resolved methodologies. These proteins are compartmentalized in full surfactant membranes but not in pure 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) vesicles, in accordance with their previously described preference for liquid disordered phases. From the observed static self-quenching and homo-FRET of BODIPY-FL labeled SP-B, we conclude that this protein forms homoaggregates at low concentration (lipid:protein ratio, 1:1000). Increases in polarization of BODIPY-FL SP-B and steady-state intensity of WT SP-B were observed upon incorporation of under-stoichiometric amounts of WT SP-C. Conversely, Marina Blue-labeled SP-C is quenched by over-stoichiometric amounts of WT SP-B, whereas under-stoichiometric concentrations of the latter actually increase SP-C emission. Time-resolved hetero-FRET from Marina Blue SP-C to BODIPY-FL SP-B confirm distinct protein aggregation behaviors with varying SP-B concentration. Based on these multiple observations, we propose a model for SP-B/SP-C interactions, where SP-C might induce conformational changes on SP-B complexes, affecting its aggregation state. The conclusions inferred from the present work shed light on the synergic functionality of both proteins in the pulmonary surfactant system.


Asunto(s)
Membrana Dobles de Lípidos/metabolismo , Fosfolípidos/metabolismo , Mapas de Interacción de Proteínas , Proteína B Asociada a Surfactante Pulmonar/metabolismo , Proteína C Asociada a Surfactante Pulmonar/metabolismo , Animales , Polarización de Fluorescencia , Transferencia Resonante de Energía de Fluorescencia , Interacciones Hidrofóbicas e Hidrofílicas , Agregado de Proteínas , Multimerización de Proteína , Proteína B Asociada a Surfactante Pulmonar/química , Proteína C Asociada a Surfactante Pulmonar/química , Porcinos
12.
Opt Express ; 27(4): 4612-4628, 2019 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-30876076

RESUMEN

The feasibility of in situ quantitative multielemental analysis and production failures detection by laser induced breakdown spectroscopy (LIBS) has been demonstrated during direct energy deposition process in additive manufacturing. Compact LIBS probe was developed and equipped with the laser cladding head installed at industrial robot for real-time chemical quantitative analysis of key components (Ni, W) during the synthesis of high wear resistant coatings of nickel alloy reinforced with tungsten carbide particles. Owing to non-uniform distribution of tungsten carbide grains in the upper surface layer the only acceptable choice for LIBS sampling was made to the melt pool at growing clad. Laser ablation at powder particles above melt pool was insignificant for LIBS plasma properties due to low intensity and low probability of plasma breakdown at powder particles. No impact of LIBS sampling on cladding process and clad properties was observed according to optical and scanning electron microscopies. The feasibility of in situ LIBS quantitative elemental analysis of key components (tungsten and nickel) has been demonstrated during the cladding process. LIBS analysis results were in good agreement with offline measurements by electron energy dispersive X-ray spectroscopy and X-ray fluorescence spectroscopy. Finally, LIBS technique was demonstrated to be a good tool for real-time detection of cladding process failures (poor laser beam quality, undesirable variation of components concentrations).

13.
Inorg Chem ; 58(8): 4842-4850, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30946575

RESUMEN

The reduction of Fe-based nanocomposite catalysts doped with Al and Cu has been studied using in situ X-ray diffraction (XRD), in situ X-ray absorption near-edge structure (XANES), and temperature-programmed reduction (TPR) techniques. The catalysts have been synthesized by melting of iron, aluminum, and copper salts. According to XRD, the catalysts consist mainly of Fe2O3 and Al2O3 phases. Alumina is in an amorphous state, whereas iron oxide forms nanoparticles with the protohematite structure. The Al3+ cations are partially dissolved in the Fe2O3 lattice. Due to strong alumina-iron oxide interaction, the specific surface area of the catalysts increases significantly. TPR and XANES data indicate that copper forms highly dispersed surface CuO nanoparticles and partially dissolves in iron oxide. It has been shown that the reduction of iron(III) oxide by CO proceeds via two routes: a direct two-stage reduction of iron(III) oxide to metal (Fe2O3 → Fe3O4 → Fe) or an indirect three-stage reduction with the formation of FeO intermediate phases (Fe2O3 → Fe3O4 → FeO → Fe). The introduction of Al into Fe2O3 leads to a decrease in the rate for all reduction steps. In addition, the introduction of Al stabilizes small Fe3O4 particles and prevents further sintering of the iron oxide. The mechanism of stabilization is associated with the formation of Fe3- xAl xO4 solid solution. The addition of copper to the Fe-Al catalyst leads to the formation of highly dispersed CuO particles on the catalyst surface and a mixed oxide with a spinel-type crystalline structure similar to that of CuFe2O4. The low-temperature reduction of Cu2+ to Cu0 accelerates the Fe2O3 → Fe3O4 and FeO → Fe transformations but does not affect the Fe3O4 → FeO/Fe stages. These changes in the reduction properties significantly affect the catalytic performance of the Fe-based nanocomposite catalysts in the low-temperature oxidation of CO.

14.
Nano Lett ; 18(9): 6045-6056, 2018 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-30157652

RESUMEN

We employ ultra-high vacuum (UHV) Raman spectroscopy in tandem with angle-resolved photoemission (ARPES) to investigate the doping-dependent Raman spectrum of epitaxial graphene on Ir(111). The evolution of Raman spectra from pristine to heavily Cs doped graphene up to a carrier concentration of 4.4 × 1014 cm-2 is investigated. At this doping, graphene is at the onset of the Lifshitz transition and renormalization effects reduce the electronic bandwidth. The optical transition at the saddle point in the Brillouin zone then becomes experimentally accessible by ultraviolet (UV) light excitation, which achieves resonance Raman conditions in close vicinity to the van Hove singularity in the joint density of states. The position of the Raman G band of fully doped graphene/Ir(111) shifts down by ∼60 cm-1. The G band asymmetry of Cs doped epitaxial graphene assumes an unusual strong Fano asymmetry opposite to that of the G band of doped graphene on insulators. Our calculations can fully explain these observations by substrate dependent quantum interference effects in the scattering pathways for vibrational and electronic Raman scattering.

15.
Biotechnol Bioeng ; 115(2): 433-443, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28832949

RESUMEN

In recent years, bio-based production of free fatty acids from renewable resources has attracted attention for their potential as precursors for the production of biofuels and biochemicals. In this study, the oleaginous yeast Yarrowia lipolytica was engineered to produce free fatty acids by eliminating glycerol metabolism. Free fatty acid production was monitored under lipogenic conditions with glycerol as a limiting factor. Firstly, the strain W29 (Δgpd1), which is deficient in glycerol synthesis, was obtained. However, W29 (Δgpd1) showed decreased biomass accumulation and glucose consumption in lipogenic medium containing a limiting supply of glycerol. Analysis of substrate utilization from a mixture of glucose and glycerol by the parental strain W29 revealed that glycerol was metabolized first and glucose utilization was suppressed. Thus, the Δgpd1Δgut2 double mutant, which is deficient also in glycerol catabolism, was constructed. In this genetic background, growth was repressed by glycerol. Oleate toxicity was observed in the Δgpd1Δgut2Δpex10 triple mutant strain which is deficient additionally in peroxisome biogenesis. Consequently, two consecutive rounds of selection of spontaneous mutants were performed. A mutant released from growth repression by glycerol was able to produce 136.8 mg L-1 of free fatty acids in a test tube, whereas the wild type accumulated only 30.2 mg L-1 . Next, an isolated oleate-resistant strain produced 382.8 mg L-1 of free fatty acids. Finely, acyl-CoA carboxylase gene (ACC1) over-expression resulted to production of 1436.7 mg L-1 of free fatty acids. The addition of dodecane promoted free fatty acid secretion and enhanced the level of free fatty acids up to 2033.8 mg L-1 during test tube cultivation.


Asunto(s)
Ácidos Grasos no Esterificados/metabolismo , Glicerol/metabolismo , Ingeniería Metabólica/métodos , Yarrowia/metabolismo , Proliferación Celular/efectos de los fármacos , Ácidos Grasos no Esterificados/análisis , Ácidos Grasos no Esterificados/toxicidad , Glucosa/metabolismo , Glicerol/farmacología , Redes y Vías Metabólicas/efectos de los fármacos , Redes y Vías Metabólicas/genética , Ácido Oléico/metabolismo , Ácido Oléico/toxicidad , Yarrowia/efectos de los fármacos , Yarrowia/genética
16.
Anal Bioanal Chem ; 410(1): 277-286, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29119255

RESUMEN

A new approach combining Raman spectrometry and laser induced breakdown spectrometry (LIBS) within a single laser event was suggested. A pulsed solid state Nd:YAG laser running in double pulse mode (two frequency-doubled sequential nanosecond laser pulses with dozens microseconds delay) was used to combine two spectrometry methods within a single instrument (Raman/LIBS spectrometer). First, a low-energy laser pulse (power density far below ablation threshold) was used for Raman measurements while a second powerful laser pulse created the plasma suitable for LIBS analysis. A short time delay between two successive pulses allows measuring LIBS and Raman spectra at different moments but within a single laser flash-lamp pumping. Principal advantages of the developed instrument include high quality Raman/LIBS spectra acquisition (due to optimal gating for Raman/LIBS independently) and absence of target thermal alteration during Raman measurements. A series of high quality Raman and LIBS spectra were acquired for inorganic salts (gypsum, anhydrite) as well as for pharmaceutical samples (acetylsalicylic acid). To the best of our knowledge, the quantitative analysis feasibility by combined Raman/LIBS instrument was demonstrated for the first time by calibration curves construction for acetylsalicylic acid (Raman) and copper (LIBS) in gypsum matrix. Combining ablation pulses and Raman measurements (LIBS/Raman measurements) within a single instrument makes it an efficient tool for identification of samples hidden by non-transparent covering or performing depth profiling analysis including remote sensing. Graphical abstract Combining Raman and laser induced breakdown spectroscopy by double pulse lasing.


Asunto(s)
Espectrometría Raman/instrumentación , Antiinflamatorios no Esteroideos/química , Aspirina/química , Sulfato de Calcio/química , Diseño de Equipo , Rayos Láser
17.
Nano Lett ; 17(2): 811-820, 2017 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-28032768

RESUMEN

Finding ways to create and control the spin-dependent properties of two-dimensional electron states (2DESs) is a major challenge for the elaboration of novel spin-based devices. Spin-orbit and exchange-magnetic interactions (SOI and EMI) are two fundamental mechanisms that enable access to the tunability of spin-dependent properties of carriers. The silicon surface of HoRh2Si2 appears to be a unique model system, where concurrent SOI and EMI can be visualized and controlled by varying the temperature. The beauty and simplicity of this system lie in the 4f moments, which act as a multiple tuning instrument on the 2DESs, as the 4f projections parallel and perpendicular to the surface order at essentially different temperatures. Here we show that the SOI locks the spins of the 2DESs exclusively in the surface plane when the 4f moments are disordered: the Rashba-Bychkov effect. When the temperature is gradually lowered and the system experiences magnetic order, the rising EMI progressively competes with the SOI leading to a fundamental change in the spin-dependent properties of the 2DESs. The spins rotate and reorient toward the out-of-plane Ho 4f moments. Our findings show that the direction of the spins and the spin-splitting of the two-dimensional electrons at the surface can be manipulated in a controlled way by using only one parameter: the temperature.

18.
Proc Natl Acad Sci U S A ; 111(42): 15066-71, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25275007

RESUMEN

Hydrogen bonds between backbone amide groups of enzymes and their substrates are often observed, but their importance in substrate binding and/or catalysis is not easy to investigate experimentally. We describe the generation and kinetic characterization of a backbone amide to ester substitution in the orotidine 5'-monophosphate (OMP) decarboxylase from Methanobacter thermoautotrophicum (MtOMPDC) to determine the importance of a backbone amide-substrate hydrogen bond. The MtOMPDC-catalyzed reaction is characterized by a rate enhancement (∼10(17)) that is among the largest for enzyme-catalyzed reactions. The reaction proceeds through a vinyl anion intermediate that may be stabilized by hydrogen bonding interaction between the backbone amide of a conserved active site serine residue (Ser-127) and oxygen (O4) of the pyrimidine moiety and/or electrostatic interactions with the conserved general acidic lysine (Lys-72). In vitro translation in conjunction with amber suppression using an orthogonal amber tRNA charged with L-glycerate ((HO)S) was used to generate the ester backbone substitution (S127(HO)S). With 5-fluoro OMP (FOMP) as substrate, the amide to ester substitution increased the value of Km by ∼1.5-fold and decreased the value of kcat by ∼50-fold. We conclude that (i) the hydrogen bond between the backbone amide of Ser-127 and O4 of the pyrimidine moiety contributes a modest factor (∼10(2)) to the 10(17) rate enhancement and (ii) the stabilization of the anionic intermediate is accomplished by electrostatic interactions, including its proximity of Lys-72. These conclusions are in good agreement with predictions obtained from hybrid quantum mechanical/molecular mechanical calculations.


Asunto(s)
Amidas/química , Ésteres/química , Orotidina-5'-Fosfato Descarboxilasa/química , Catálisis , Dominio Catalítico , Sistema Libre de Células , Cristalografía por Rayos X , Escherichia coli/metabolismo , Euryarchaeota/enzimología , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Espectrometría de Masas , Modelos Moleculares , Simulación de Dinámica Molecular , Biosíntesis de Proteínas , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , ARN Catalítico/química , ARN de Transferencia/química , Espectrofotometría Ultravioleta , Electricidad Estática , Espectrometría de Masas en Tándem , Temperatura
19.
Proc Natl Acad Sci U S A ; 111(23): 8535-40, 2014 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-24872444

RESUMEN

The rate of protein evolution is determined by a combination of selective pressure on protein function and biophysical constraints on protein folding and structure. Determining the relative contributions of these properties is an unsolved problem in molecular evolution with broad implications for protein engineering and function prediction. As a case study, we examined the structural divergence of the rapidly evolving o-succinylbenzoate synthase (OSBS) family, which catalyzes a step in menaquinone synthesis in diverse microorganisms and plants. On average, the OSBS family is much more divergent than other protein families from the same set of species, with the most divergent family members sharing <15% sequence identity. Comparing 11 representative structures revealed that loss of quaternary structure and large deletions or insertions are associated with the family's rapid evolution. Neither of these properties has been investigated in previous studies to identify factors that affect the rate of protein evolution. Intriguingly, one subfamily retained a multimeric quaternary structure and has small insertions and deletions compared with related enzymes that catalyze diverse reactions. Many proteins in this subfamily catalyze both OSBS and N-succinylamino acid racemization (NSAR). Retention of ancestral structural characteristics in the NSAR/OSBS subfamily suggests that the rate of protein evolution is not proportional to the capacity to evolve new protein functions. Instead, structural features that are conserved among proteins with diverse functions might contribute to the evolution of new functions.


Asunto(s)
Proteínas Bacterianas/química , Liasas de Carbono-Carbono/química , Variación Genética , Estructura Cuaternaria de Proteína , Bacterias/enzimología , Bacterias/genética , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/genética , Liasas de Carbono-Carbono/clasificación , Liasas de Carbono-Carbono/genética , Dominio Catalítico , Cristalografía por Rayos X , Deinococcus/enzimología , Deinococcus/genética , Enterococcus faecalis/enzimología , Enterococcus faecalis/genética , Evolución Molecular , Mutación INDEL , Listeria/enzimología , Listeria/genética , Modelos Moleculares , Filogenia , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Thermus thermophilus/enzimología , Thermus thermophilus/genética
20.
Sensors (Basel) ; 17(11)2017 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-29099776

RESUMEN

Conjugated polymers (CPs) have proved to be promising chemosensory materials for detecting nitroaromatic explosives vapors, as they quickly convert a chemical interaction into an easily-measured high-sensitivity optical output. The nitroaromatic analytes are strongly electron-deficient, whereas the conjugated polymer sensing materials are electron-rich. As a result, the photoexcitation of the CP is followed by electron transfer to the nitroaromatic analyte, resulting in a quenching of the light-emission from the conjugated polymer. The best CP in our studies was found to be poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-bithiophene] (F8T2). It is photostable, has a good absorption between 400 and 450 nm, and a strong and structured fluorescence around 550 nm. Our studies indicate up to 96% quenching of light-emission, accompanied by a marked decrease in the fluorescence lifetime, upon exposure of the films of F8T2 in ethyl cellulose to nitrobenzene (NB) and 1,3-dinitrobenzene (DNB) vapors at room temperature. The effects of the polymeric matrix, plasticizer, and temperature have been studied, and the morphology of films determined by scanning electron microscopy (SEM) and confocal fluorescence microscopy. We have used ink jet printing to produce sensor films containing both sensor element and a fluorescence reference. In addition, a high dynamic range, intensity-based fluorometer, using a laser diode and a filtered photodiode was developed for use with this system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA