Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sci Data ; 11(1): 1165, 2024 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-39443503

RESUMEN

The National Cancer Institute (NCI) Image Data Commons (IDC) offers publicly available cancer radiology collections for cloud computing, crucial for developing advanced imaging tools and algorithms. Despite their potential, these collections are minimally annotated; only 4% of DICOM studies in collections considered in the project had existing segmentation annotations. This project increases the quantity of segmentations in various IDC collections. We produced high-quality, AI-generated imaging annotations dataset of tissues, organs, and/or cancers for 11 distinct IDC image collections. These collections contain images from a variety of modalities, including computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET). The collections cover various body parts, such as the chest, breast, kidneys, prostate, and liver. A portion of the AI annotations were reviewed and corrected by a radiologist to assess the performance of the AI models. Both the AI's and the radiologist's annotations were encoded in conformance to the Digital Imaging and Communications in Medicine (DICOM) standard, allowing for seamless integration into the IDC collections as third-party analysis collections. All the models, images and annotations are publicly accessible.


Asunto(s)
National Cancer Institute (U.S.) , Neoplasias , Humanos , Neoplasias/diagnóstico por imagen , Estados Unidos , Tomografía Computarizada por Rayos X , Imagen por Resonancia Magnética , Inteligencia Artificial , Tomografía de Emisión de Positrones , Nube Computacional
2.
Nat Commun ; 14(1): 1572, 2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36949078

RESUMEN

The exchange of large and complex slide microscopy imaging data in biomedical research and pathology practice is impeded by a lack of data standardization and interoperability, which is detrimental to the reproducibility of scientific findings and clinical integration of technological innovations. We introduce Slim, an open-source, web-based slide microscopy viewer that implements the internationally accepted Digital Imaging and Communications in Medicine (DICOM) standard to achieve interoperability with a multitude of existing medical imaging systems. We showcase the capabilities of Slim as the slide microscopy viewer of the NCI Imaging Data Commons and demonstrate how the viewer enables interactive visualization of traditional brightfield microscopy and highly-multiplexed immunofluorescence microscopy images from The Cancer Genome Atlas and Human Tissue Atlas Network, respectively, using standard DICOMweb services. We further show how Slim enables the collection of standardized image annotations for the development or validation of machine learning models and the visual interpretation of model inference results in the form of segmentation masks, spatial heat maps, or image-derived measurements.


Asunto(s)
Ciencia de los Datos , Microscopía , Humanos , Microscopía/métodos , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA