Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Mol Biol Evol ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38935574

RESUMEN

Venom systems are complex traits that have independently emerged multiple times in diverse plant and animal phyla. Within each venomous lineage there typically exists interspecific variation in venom composition where several factors have been proposed as drivers of variation, including phylogeny and diet. Understanding these factors is of broad biological interest and has implications for the development of anti-venom therapies and venom-based drug discovery. Because of their high species richness and the presence of several major evolutionary prey shifts, venomous marine cone snails (genus Conus) provide an ideal system to investigate drivers of interspecific venom variation. Here, by analyzing the venom gland expression profiles of ∼3,000 toxin genes from 42 species of cone snail, we elucidate the role of prey-specific selection pressures in shaping venom variation. By analyzing overall venom composition and individual toxin structures, we demonstrate that the shifts from vermivory to piscivory in Conus are complemented by distinct changes in venom composition independent of phylogeny. In vivo injections of venom from piscivorous cone snails in fish further showed a higher potency compared to venom of non-piscivores demonstrating a selective advantage. Together, our findings provide compelling evidence for the role of prey shifts in directing the venom composition of cone snails and expand our understanding of the mechanisms of venom variation and diversification.

2.
Syst Biol ; 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38456663

RESUMEN

The molluscan order Neogastropoda encompasses over 15,000 almost exclusively marine species playing important roles in benthic communities and in the economies of coastal countries. Neogastropoda underwent intensive cladogenesis in early stages of diversification, generating a 'bush' at the base of their evolutionary tree, that has been hard to resolve even with high throughput molecular data. In the present study to resolve the bush, we use a variety of phylogenetic inference methods and a comprehensive exon capture dataset of 1,817 loci (79.6% data occupancy) comprising 112 taxa of 48 out of 60 Neogastropoda families. Our results show consistent topologies and high support in all analyses at (super)family level, supporting monophyly of Muricoidea, Mitroidea, Conoidea, and, with some reservations, Olivoidea and Buccinoidea. Volutoidea and Turbinelloidea as currently circumscribed are clearly paraphyletic. Despite our analyses consistently resolving most backbone nodes, three prove problematic: First, uncertain placement of Cancellariidae, as the sister group to either a Ficoidea-Tonnoidea clade, or to the rest of Neogastropoda, leaves monophyly of Neogastropoda unresolved. Second, relationships are contradictory at the base of the major 'core Neogastropoda' grouping. Third, coalescence-based analyses reject monophyly of the Buccinoidea in relation to Vasidae. We analysed phylogenetic signal of targeted loci in relation to potential biases, and we propose most probable resolutions in the latter two recalcitrant nodes. The uncertain placement of Cancellariidae may be explained by orthology violations due to differential paralog loss shortly after the whole genome duplication, which should be resolved with a curated set of longer loci.

3.
Mol Phylogenet Evol ; 191: 107969, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38007006

RESUMEN

Taxon sampling in most phylogenomic studies is often based on known taxa and/or morphospecies, thus ignoring undescribed diversity and/or cryptic lineages. The family Turridae is a group of venomous snails within the hyperdiverse superfamily Conoidea that includes many undescribed and cryptic species. Therefore 'traditional' taxon sampling could constitute a strong risk of undersampling or oversampling Turridae lineages. To minimize potential biases, we establish a robust sampling strategy, from species delimitation to phylogenomics. More than 3,000 cox-1 "barcode" sequences were used to propose 201 primary species hypotheses, nearly half of them corresponding to species potentially new to science, including several cryptic species. A 110-taxa exon-capture tree, including species representatives of the diversity uncovered with the cox-1 dataset, was build using up to 4,178 loci. Our results show the polyphyly of the genus Gemmula, that is split into up to 10 separate lineages, of which half would not have been detected if the sampling strategy was based only on described species. Our results strongly suggest that the use of blind, exploratory and intensive barcode sampling is necessary to avoid sampling biases in phylogenomic studies.


Asunto(s)
Código de Barras del ADN Taxonómico , Caracoles , Animales , Filogenia , Caracoles/genética , ADN , Exones
4.
Proc Biol Sci ; 289(1980): 20221152, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35946162

RESUMEN

Venoms of predatory marine cone snails are intensely studied because of the biomedical applications of the neuropeptides that they contain, termed conotoxins. Meanwhile some gastropod lineages have independently acquired secretory glands strikingly similar to the venom gland of cone snails, suggesting that they possess similar venoms. Here we focus on the most diversified of these clades, the genus Vexillum. Based on the analysis of a multi-species proteo-transcriptomic dataset, we show that Vexillum species indeed produce complex venoms dominated by highly diversified short cysteine-rich peptides, vexitoxins. Vexitoxins possess the same precursor organization, display overlapping cysteine frameworks and share several common post-translational modifications with conotoxins. Some vexitoxins show sequence similarity to conotoxins and adopt similar domain conformations, including a pharmacologically relevant inhibitory cysteine knot motif. The Vexillum envenomation gland (gL) is a notably more recent evolutionary novelty than the conoidean venom gland. Thus, we hypothesize lower divergence between vexitoxin genes, and their ancestral 'somatic' counterparts compared to that in conotoxins, and we find support for this hypothesis in the evolution of the vexitoxin cluster V027. We use this example to discuss how future studies on vexitoxins can inform the origin of conotoxins, and how they may help to address outstanding questions in venom evolution.


Asunto(s)
Conotoxinas , Caracol Conus , Animales , Conotoxinas/genética , Caracol Conus/química , Caracol Conus/genética , Cisteína , Péptidos/química , Caracoles , Ponzoñas
5.
Syst Biol ; 69(3): 413-430, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31504987

RESUMEN

How species diversification occurs remains an unanswered question in predatory marine invertebrates, such as sea snails of the family Terebridae. However, the anatomical disparity found throughput the Terebridae provides a unique perspective for investigating diversification patterns in venomous predators. In this study, a new dated molecular phylogeny of the Terebridae is used as a framework for investigating diversification of the family through time, and for testing the putative role of intrinsic and extrinsic traits, such as shell size, larval ecology, bathymetric distribution, and anatomical features of the venom apparatus, as drivers of terebrid species diversification. Macroevolutionary analysis revealed that when diversification rates do not vary across Terebridae clades, the whole family has been increasing its global diversification rate since 25 Ma. We recovered evidence for a concurrent increase in diversification of depth ranges, while shell size appeared to have undergone a fast divergence early in terebrid evolutionary history. Our data also confirm that planktotrophy is the ancestral larval ecology in terebrids, and evolutionary modeling highlighted that shell size is linked to larval ecology of the Terebridae, with species with long-living pelagic larvae tending to be larger and have a broader size range than lecithotrophic species. Although we recovered patterns of size and depth trait diversification through time and across clades, the presence or absence of a venom gland (VG) did not appear to have impacted Terebridae diversification. Terebrids have lost their venom apparatus several times and we confirm that the loss of a VG happened in phylogenetically clustered terminal taxa and that reversal is extremely unlikely. Our findings suggest that environmental factors, and not venom, have had more influence on terebrid evolution.


Asunto(s)
Organismos Acuáticos/clasificación , Biodiversidad , Evolución Biológica , Ambiente , Filogenia , Caracoles/clasificación , Animales
6.
Mol Phylogenet Evol ; 142: 106660, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31639524

RESUMEN

For over a decade now, High Throughput sequencing (HTS) approaches have revolutionized phylogenetics, both in terms of data production and methodology. While transcriptomes and (reduced) genomes are increasingly used, generating and analyzing HTS datasets remain expensive, time consuming and complex for most non-model taxa. Indeed, a literature survey revealed that 74% of the molecular phylogenetics trees published in 2018 are based on data obtained through Sanger sequencing. In this context, our goal was to identify the strategy that would represent the best compromise among costs, time and robustness of the resulting tree. We sequenced and assembled 32 transcriptomes of the marine mollusk family Turridae, considered as a typical non-model animal taxon. From these data, we extracted the loci most commonly used in gastropod phylogenies (cox1, 12S, 16S, 28S, h3 and 18S), full mitogenomes, and a reduced nuclear transcriptome representation. With each dataset, we reconstructed phylogenies and compared their robustness and accuracy. We discuss the impact of missing data and the use of statistical tests, tree metrics, and supertree and supermatrix methods to further improve phylogenetic data acquisition pipelines. We evaluated the overall costs (time and money) in order to identify the best compromise for phylogenetic data sampling in non-model animal taxa. Although sequencing full mitogenomes seems to constitute the best compromise both in terms of costs and node support, they are known to induce biases in phylogenetic reconstructions. Rather, we recommend to systematically include loci commonly used for phylogenetics and taxonomy (i.e. DNA barcodes, rRNA genes, full mitogenomes, etc.) among the other loci when designing baits for capture.


Asunto(s)
Filogenia , Animales , Costos y Análisis de Costo , Perfilación de la Expresión Génica , Genoma , Secuenciación de Nucleótidos de Alto Rendimiento , Moluscos/clasificación , Moluscos/genética , Análisis de Secuencia de ADN
7.
Mol Biol Evol ; 35(10): 2355-2374, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30032303

RESUMEN

Transcriptome-based exon capture methods provide an approach to recover several hundred markers from genomic DNA, allowing for robust phylogenetic estimation at deep timescales. We applied this method to a highly diverse group of venomous marine snails, Conoidea, for which published phylogenetic trees remain mostly unresolved for the deeper nodes. We targeted 850 protein coding genes (678,322 bp) in ca. 120 samples, spanning all (except one) known families of Conoidea and a broad selection of non-Conoidea neogastropods. The capture was successful for most samples, although capture efficiency decreased when DNA libraries were of insufficient quality and/or quantity (dried samples or low starting DNA concentration) and when targeting the most divergent lineages. An average of 75.4% of proteins was recovered, and the resulting tree, reconstructed using both supermatrix (IQ-tree) and supertree (Astral-II, combined with the Weighted Statistical Binning method) approaches, are almost fully supported. A reconstructed fossil-calibrated tree dates the origin of Conoidea to the Lower Cretaceous. We provide descriptions for two new families. The phylogeny revealed in this study provides a robust framework to reinterpret changes in Conoidea anatomy through time. Finally, we used the phylogeny to test the impact of the venom gland and radular type on diversification rates. Our analyses revealed that repeated losses of the venom gland had no effect on diversification rates, while families with a breadth of radula types showed increases in diversification rates, thus suggesting that trophic ecology may have an impact on the evolution of Conoidea.


Asunto(s)
Caracol Conus/genética , Análisis de Secuencia de ADN/métodos , Animales , Evolución Biológica , Evolución Molecular , Exones , Gastrópodos/genética , Variación Genética/genética , Filogenia , Transcriptoma/genética
8.
Mol Biol Evol ; 33(11): 2924-2934, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27524826

RESUMEN

A specialized insulin was recently found in the venom of a fish-hunting cone snail, Conus geographus Here we show that many worm-hunting and snail-hunting cones also express venom insulins, and that this novel gene family has diversified explosively. Cone snails express a highly conserved insulin in their nerve ring; presumably this conventional signaling insulin is finely tuned to the Conus insulin receptor, which also evolves very slowly. By contrast, the venom insulins diverge rapidly, apparently in response to biotic interactions with prey and also possibly the cones' own predators and competitors. Thus, the inwardly directed signaling insulins appear to experience predominantly purifying sele\ction to target an internal receptor that seldom changes, while the outwardly directed venom insulins frequently experience directional selection to target heterospecific insulin receptors in a changing mix of prey, predators and competitors. Prey insulin receptors may often be constrained in ways that prevent their evolutionary escape from targeted venom insulins, if amino-acid substitutions that result in escape also degrade the receptor's signaling functions.


Asunto(s)
Conotoxinas/genética , Caracol Conus/genética , Insulina/biosíntesis , Secuencia de Aminoácidos , Animales , Teorema de Bayes , Conotoxinas/biosíntesis , Conotoxinas/toxicidad , Caracol Conus/metabolismo , Evolución Molecular , Variación Genética , Insulina/genética , Datos de Secuencia Molecular , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Ponzoñas/biosíntesis , Ponzoñas/genética
9.
Brain Behav Evol ; 86(1): 58-74, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26397110

RESUMEN

The venomous fish-hunting cone snails (Conus) comprise eight distinct lineages evolved from ancestors that preyed on worms. In this article, we attempt to reconstruct events resulting in this shift in food resource by closely examining patterns of behavior, biochemical agents (toxins) that facilitate prey capture and the combinations of toxins present in extant species. The first sections introduce three different hunting behaviors associated with piscivory: 'taser-and-tether', 'net-engulfment' and 'strike-and-stalk'. The first two fish-hunting behaviors are clearly associated with distinct groups of venom components, called cabals, which act in concert to modify the behavior of prey in a specific manner. Derived fish-hunting behavior clearly also correlates with physical features of the radular tooth, the device that injects these biochemical components. Mapping behavior, biochemical components and radular tooth features onto phylogenetic trees shows that fish-hunting behavior emerged at least twice during evolution. The system presented here may be one of the best examples where diversity in structure, physiology and molecular features were initially driven by particular pathways selected through behavior.


Asunto(s)
Evolución Biológica , Caracol Conus/fisiología , Neurobiología , Conducta Predatoria/fisiología , Animales
10.
Zool Scr ; 51(5): 550-561, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36245672

RESUMEN

The Neogastropoda (Mollusca, Gastropoda) encompass more than 15,000 described species of marine predators, including several model organisms in toxinology, embryology and physiology. However, their phylogenetic relationships remain mostly unresolved and their classification unstable. We took advantage of the many mitogenomes published in GenBank to produce a new molecular phylogeny of the neogastropods. We completed the taxon sampling by using an in-house bioinformatic pipeline to retrieve mitochondrial genes from 13 transcriptomes, corresponding to five families not represented in GenBank, for a final dataset of 113 taxa. Because mitogenomic data are prone to reconstruction artefacts, eight different evolutionary models were applied to reconstruct phylogenetic trees with IQTREE, RAxML and MrBayes. If the over-parametrization of some models produced trees with aberrant internal long branches, the global topology of the trees remained stable over models and softwares, and several relationships were revealed or found supported here for the first time. However, even if our dataset encompasses 60% of the valid families of neogastropods, some key taxa are missing and should be added in the future before proposing a revision of the classification of the neogastropods. Our study also demonstrates that even complex models struggle to satisfactorily handle the evolutionary history of mitogenomes, still leading to long-branch attractions in phylogenetic trees. Other approaches, such as reduced-genome strategies, must be envisaged to fully resolve the neogastropod phylogeny.

11.
Mitochondrial DNA B Resour ; 6(3): 943-945, 2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33796692

RESUMEN

We report the complete mitochondrial genome sequence of Costapex baldwinae, a Caribbean representative of a predominantly Indo-Pacific genus of gastropods that occurs on sunken wood at bathyal depths. The mitogenome is 15,321 bp in length and has a base composition of 29.2% A, 41.8% T, 12.0% C and 17.0% G. It contains 13 protein-coding, two ribosomal RNA, and 22 tRNA genes with the same gene order and strand orientation as other non-toxoglossan neogastropods. Phylogenetic analyses indicate that the superfamily Turbinelloidea, represented by this species, diverged early within the Neogastropod radiation, forming the sister group to a clade that includes five of the seven presently recognized superfamilies.

12.
Genome Biol Evol ; 12(5): 684-700, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32333764

RESUMEN

Predatory gastropods of the superfamily Conoidea number over 12,000 living species. The evolutionary success of this lineage can be explained by the ability of conoideans to produce complex venoms for hunting, defense, and competitive interactions. Whereas venoms of cone snails (family Conidae) have become increasingly well studied, the venoms of most other conoidean lineages remain largely uncharacterized. In the present study, we present the venom gland transcriptomes of two species of the genus Clavus that belong to the family Drilliidae. Venom gland transcriptomes of two specimens of Clavus canalicularis and two specimens of Clavus davidgilmouri were analyzed, leading to the identification of a total of 1,176 putative venom peptide toxins (drillipeptides). Based on the combined evidence of secretion signal sequence identity, entire precursor similarity search (BLAST), and the orthology inference, putative Clavus toxins were assigned to 158 different gene families. The majority of identified transcripts comprise signal, pro-, mature peptide, and post-regions, with a typically short (<50 amino acids) and cysteine-rich mature peptide region. Thus, drillipeptides are structurally similar to conotoxins. However, convincing homology with known groups of Conus toxins was only detected for very few toxin families. Among these are Clavus counterparts of Conus venom insulins (drillinsulins), porins (drilliporins), and highly diversified lectins (drillilectins). The short size of most drillipeptides and structural similarity to conotoxins were unexpected, given that most related conoidean gastropod families (Terebridae and Turridae) possess longer mature peptide regions. Our findings indicate that, similar to conotoxins, drillipeptides may represent a valuable resource for future pharmacological exploration.


Asunto(s)
Evolución Biológica , Caracol Conus/genética , Variación Genética , Venenos de Moluscos/genética , Fragmentos de Péptidos/genética , Transcriptoma , Animales , Filogenia
13.
Toxins (Basel) ; 11(11)2019 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-31661832

RESUMEN

Profundiconus is the most divergent cone snail genus and its unique phylogenetic position, sister to the rest of the family Conidae, makes it a key taxon for examining venom evolution and diversity. Venom gland and foot transcriptomes of Profundiconus cf. vaubani and Profundiconusneocaledonicus were de novo assembled, annotated, and analyzed for differential expression. One hundred and thirty-seven venom components were identified from P. cf. vaubani and 82 from P. neocaledonicus, with only four shared by both species. The majority of the transcript diversity was composed of putative peptides, including conotoxins, profunditoxins, turripeptides, insulin, and prohormone-4. However, there were also a significant percentage of other putative venom components such as chymotrypsin and L-rhamnose-binding lectin. The large majority of conotoxins appeared to be from new gene superfamilies, three of which are highly different from previously reported venom peptide toxins. Their low conotoxin diversity and the type of insulin found suggested that these species, for which no ecological information are available, have a worm or molluscan diet associated with a narrow dietary breadth. Our results indicate that Profundiconus venom is highly distinct from that of other cone snails, and therefore important for examining venom evolution in the Conidae family.


Asunto(s)
Evolución Biológica , Conotoxinas/genética , Conotoxinas/toxicidad , Caracol Conus/química , Caracol Conus/genética , Variación Genética , Animales
14.
Genome Biol Evol ; 9(9): 2211-2225, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28922871

RESUMEN

The genus Conus comprises approximately 700 species of venomous marine cone snails that are highly efficient predators of worms, snails, and fish. In evolutionary terms, cone snails are relatively young with the earliest fossil records occurring in the Lower Eocene, 55 Ma. The rapid radiation of cone snail species has been accompanied by remarkably high rates of toxin diversification. To shed light on the molecular mechanisms that accompany speciation, we investigated the toxin repertoire of two sister species, Conus andremenezi and Conus praecellens, that were until recently considered a single variable species. A total of 196 and 250 toxin sequences were identified in the venom gland transcriptomes of C. andremenezi and C. praecellens belonging to 25 and 29 putative toxin gene superfamilies, respectively. Comparative analysis with closely (Conus tribblei and Conus lenavati) and more distantly related species (Conus geographus) suggests that speciation is associated with significant diversification of individual toxin genes (exogenes) whereas the expression pattern of toxin gene superfamilies within lineages remains largely conserved. Thus, changes within individual toxin sequences can serve as a sensitive indicator for recent speciation whereas changes in the expression pattern of gene superfamilies are likely to reflect more dramatic differences in a species' interaction with its prey, predators, and competitors.


Asunto(s)
Conotoxinas/genética , Caracol Conus/clasificación , Caracol Conus/genética , Transcriptoma , Secuencia de Aminoácidos , Animales , Filogenia , Alineación de Secuencia , Especificidad de la Especie
15.
Zootaxa ; 3244(1): 1-58, 2012 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-23847408

RESUMEN

The taxonomy of the genus TurrisBatsch, 1789, type genus of the family Turridae, widespread in shallow-water habitats of tropic Indo-Pacific, is revised. A total of 31 species of Turris, are here recognized as valid. New species described: Turris chaldaea, Turris clausifossata, Turris guidopoppei, Turris intercancellata, Turris kantori, T. kathiewayae. Homonym renamed: Turris bipartita nom. nov. for Pleurotoma variegataKiener, 1839 (non Philippi, 1836). New synonymies: Turris ankaramanyensisBozzetti, 2006 = Turris tanyspiraKilburn, 1975; Turris imperfecti, T. nobilis, T. pulchra and T. tornatumRöding, 1798, and Turris assyriaOlivera, Seronay & Fedosov, 2010 = T. babylonia; Turris dollyiOlivera, 2000 = Pleurotoma crispaLamarck, 1816; Turris totiphyllisOlivera, 2000 = Turris hidalgoiVera-Peláez, Vega-Luz & Lozano-Francisco, 2000; Turris kilburniVera-Peláez, Vega-Luz & Lozano-Francisco, 2000 = Turris pagasaOlivera, 2000; Turris (Annulaturris) muniziVera-Peláez, Vega-Luz & Lozano-Francisco, 2000 = Gemmula lululimiOlivera, 2000. Revised status: Turris intricataPowell, 1964, Pleurotoma variegata Kiener, 1839 (non Philippi, 1836) and Pleurotoma yeddoensis Jousseaume, 1883, are regarded as full species (not subspecies of Turris crispa). Neotype designated: For Pleurotoma garnonsiiReeve, 1843, to distinguish it from Turris garnonsii of recent authors, type locality emended to Zanzibar. New combination: Turris orthopleuraKilburn, 1983, is transferred to genus Makiyamaia, family Clavatulidae.

16.
Philipp Sci Lett ; 3(1)2010 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-23133790

RESUMEN

Turris babylonia (Linnaeus, 1758) is the designated type species of Turris, the nominate genus of the family Turridae. This species has unusual taxonomic significance, since the family Turridae is a large biodiverse group that has been highly problematic in its taxonomy. In this article, we address the identity of Turris babylonia: molecular data presented here and expanded elsewhere demonstrate that two distinctive varieties with divergent shell morphology, both conventionally assigned to Turris babylonia, are in fact different species. We describe one of the forms as Turris assyria, new species. Thus, specimens previously assigned to Turris babylonia now comprise at least two taxa, Turris babylonia and Turris assyria; it remains possible that each is a multi-species complex. Some of the numerous varieties and morphologically divergent forms in each complex may prove not to be conspecific with the two species, each precisely defined in this work by a specific barcode sequence.

17.
Toxicon ; 56(7): 1257-66, 2010 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-20005243

RESUMEN

Cone snail venoms have yielded pharmacologically active natural products of exceptional scientific interest. However, cone snails are a small minority of venomous molluscan biodiversity, the vast majority being tiny venomous morphospecies in the family Turridae. A novel method called lumun-lumun opens access to these micromolluscs and their venoms. Old fishing nets are anchored to the sea bottom for a period of 1-6months and marine biotas rich in small molluscs are established. In a single lumun-lumun community, we found a remarkable gastropod biodiversity (155 morphospecies). Venomous predators belonging to the superfamily Conoidea (36 morphospecies) were the largest group, the majority being micromolluscs in the family Turridae. We carried out an initial analysis of the most abundant of the turrid morphospecies recovered, Clathurella (Lienardia) cincta (Dunker, 1871). In contrast to all cDNA clones characterized from cone snail venom ducts, one of the C. cincta clones identified encoded two different peptide precursors presumably translated from a single mRNA. The prospect of easily accessing so many different morphospecies of venomous marine snails raises intriguing toxinological possibilities: the 36 conoidean morphospecies in this one net alone have the potential to yield thousands of novel pharmacologically active compounds.


Asunto(s)
Biodiversidad , Venenos de Moluscos/química , Caracoles/química , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Clonación Molecular , ADN Complementario/química , Datos de Secuencia Molecular , Venenos de Moluscos/genética , ARN Mensajero/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA