Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Asunto principal
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(30): e2307524120, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37459508

RESUMEN

Of the six elements incorporated into the major polymers of life, phosphorus is the least abundant on a global scale [E. Anders, M. Ebihara, Geochim. Cosmochim. Acta 46, 2363-2380 (1982)] and has been described as the "ultimate limiting nutrient" [T. Tyrrell, Nature 400, 525-531 (1999)]. In the modern ocean, the supply of dissolved phosphorus is predominantly sustained by the oxidative remineralization/recycling of organic phosphorus in seawater. However, in the Archean Eon (4 to 2.5 Ga), surface waters were anoxic and reducing. Here, we conducted photochemical experiments to test whether photodegradation of ubiquitous dissolved organic phosphorus could facilitate phosphorus recycling under the simulated Archean conditions. Our results strongly suggest that organic phosphorus compounds, which were produced by marine biota (e.g., adenosine monophosphate and phosphatidylserine) or delivered by meteorites (e.g., methyl phosphonate) can undergo rapid photodegradation and release inorganic phosphate into solution under anoxic conditions. Our experimental results and theoretical calculations indicate that photodegradation of organic phosphorus could have been a significant source of bioavailable phosphorus in the early ocean and would have fueled primary production during the Archean eon.

2.
Proteins ; 92(1): 52-59, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37596815

RESUMEN

The core metabolic reactions of life drive electrons through a class of redox protein enzymes, the oxidoreductases. The energetics of electron flow is determined by the redox potentials of organic and inorganic cofactors as tuned by the protein environment. Understanding how protein structure affects oxidation-reduction energetics is crucial for studying metabolism, creating bioelectronic systems, and tracing the history of biological energy utilization on Earth. We constructed ProtReDox (https://protein-redox-potential.web.app), a manually curated database of experimentally determined redox potentials. With over 500 measurements, we can begin to identify how proteins modulate oxidation-reduction energetics across the tree of life. By mapping redox potentials onto networks of oxidoreductase fold evolution, we can infer the evolution of electron transfer energetics over deep time. ProtReDox is designed to include user-contributed submissions with the intention of making it a valuable resource for researchers in this field.


Asunto(s)
Oxidorreductasas , Oxidorreductasas/química , Oxidación-Reducción , Transporte de Electrón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA