Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2299-2307, 2024 May.
Artículo en Zh | MEDLINE | ID: mdl-38812130

RESUMEN

In the traditional Chinese medicine(TCM) manufacturing industry, quality control determines the safety, effectiveness, and quality stability of the final product. The traditional quality control method generally carries out sampling off-line testing of drugs after the end of the batch production, which is incomprehensive, and it fails to find the problems in the production process in time. Process analysis technology(PAT) uses process testing, mathematical modeling, data analysis, and other technologies to collect, analyze, feedback, control, and continuously improve the critical quality attributes(CQA) in all aspects of the production of TCM preparations in real time. The application of PAT in the TCM manufacturing industry is one of the research hotspots in recent years, which has the advantages of real-time, systematic, non-destructive, green, and rapid detection for the production quality control of TCM preparations. It can effectively ensure the stability of the quality of TCM preparations, improve production efficiency, and play a key role in the study of the quantity and quality transfer law of TCM. Commonly used PAT includes near-infrared spectroscopy, Raman spectroscopy, online microwave, etc. In addition, the establishment of an online detection model by PAT is the key basic work to realize intelligent manufacturing in TCM production. Obtaining real-time online detection data through PAT and establishing a closed-loop control model on this basis are a key common technical difficulty in the industry. This paper adopted systematic literature analysis to summarize the relevant Chinese and foreign literature, policies and regulations, and production applications, and it introduced the development trend and practical application of PAT, so as to provide references for accelerating the application of PAT in the TCM manufacturing industry, the intelligent transformation and upgrading, and high-quality development of the TCM industry.


Asunto(s)
Medicamentos Herbarios Chinos , Medicina Tradicional China , Control de Calidad , Medicina Tradicional China/normas , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/normas , Medicamentos Herbarios Chinos/análisis , Tecnología Farmacéutica/métodos , Tecnología Farmacéutica/normas , Industria Farmacéutica/normas
2.
Phys Rev E ; 101(5-1): 053001, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32575209

RESUMEN

Origami and crumpling are two processes to reduce the size of a membrane. In the shrink-expand process, the crease pattern of the former is ordered and protected by its topological mechanism, while that of the latter is disordered and generated randomly. We observe a morphological transition between origami and crumpling states in a twisted cylindrical shell. By studying the regularity of the crease pattern, acoustic emission, and energetics from experiments and simulations, we develop a model to explain this transition from frustration of geometry that causes breaking of rotational symmetry. In contrast to solving von Kármán-Donnell equations numerically, our model allows derivations of analytic formulas that successfully describe the origami state. When generalized to truncated cones and polygonal cylinders, we explain why multiple and/or reversed crumpling-origami transitions can occur.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA