Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Theor Appl Genet ; 137(2): 42, 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38308687

RESUMEN

Chilling tolerance in crops can increase resilience through longer growing seasons, drought escape, and nitrogen use efficiency. In sorghum (Sorghum bicolor [L.] Moench), breeding for chilling tolerance has been stymied by coinheritance of the largest-effect chilling tolerance locus, qSbCT04.62, with the major gene underlying undesirable grain proanthocyanidins, WD40 transcriptional regulator Tannin1. To test if this coinheritance is due to antagonistic pleiotropy of Tannin1, we developed and studied near-isogenic lines (NILs) carrying chilling tolerant haplotypes at qCT04.62. Whole-genome sequencing of the NILs revealed introgressions spanning part of the qCT04.62 confidence interval, including the Tannin1 gene and an ortholog of Arabidopsis cold regulator CBF/DREB1G. Segregation pattern of grain tannin in NILs confirmed the presence of wildtype Tannin1 and the reconstitution of a functional MYB-bHLH-WD40 regulatory complex. Low-temperature germination did not differ between NILs, suggesting that Tannin1 does not modulate this component of chilling tolerance. Similarly, NILs did not differ in seedling growth rate under either of two contrasting controlled environment chilling scenarios. Finally, while the chilling tolerant parent line had notably different photosynthetic responses from the susceptible parent line - including greater non-photochemical quenching before, during, and after chilling - the NIL responses match the susceptible parent. Thus, our findings suggest that tight linkage drag, not pleiotropy, underlies the precise colocalization of Tan1 with qCT04.62 and the qCT04.62 quantitative trait nucleotide lies outside the NIL introgressions. Breaking linkage at this locus should advance chilling tolerance breeding in sorghum and the identification of a novel chilling tolerance regulator.


Asunto(s)
Arabidopsis , Sorghum , Fitomejoramiento , Frío , Taninos , Plantones/genética
2.
Plant Genome ; 17(2): e20452, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38654377

RESUMEN

Durable host plant resistance (HPR) to insect pests is critical for sustainable agriculture. Natural variation exists for aphid HPR in sorghum (Sorghum bicolor), but the genetic architecture and phenotype have not been clarified and characterized for most sources. In order to assess the current threat of a sorghum aphid (Melanaphis sorghi) biotype shift, we characterized the phenotype of Resistance to Melanaphis sorghi 1 (RMES1) and additional HPR architecture in globally admixed populations selected under severe sorghum aphid infestation in Haiti. We found RMES1 reduces sorghum aphid fecundity but not bird cherry-oat aphid (Rhopalosiphum padi) fecundity, suggesting a discriminant HPR response typical of gene-for-gene interaction. A second resistant gene, Resistance to Melanaphis sorghi 2 (RMES2), was more frequent than RMES1 resistant alleles in landraces and historic breeding lines. RMES2 contributes early and mid-season aphid resistance in a segregating F2 population; however, RMES1 was only significant with mid-season fitness. In a fixed population with high sorghum aphid resistance, RMES1 and RMES2 were selected for demonstrating a lack of severe antagonistic pleiotropy. Associations with resistance colocated with cyanogenic glucoside biosynthesis genes support additional HPR sources. Globally, therefore, an HPR source vulnerable to biotype shift via selection pressure (RMES1) is bolstered by a second common source of resistance in breeding programs (RMES2), which may be staving off a biotype shift and is critical for sustainable sorghum production.


Asunto(s)
Áfidos , Sorghum , Áfidos/fisiología , Áfidos/genética , Sorghum/genética , Sorghum/parasitología , Animales , Genes de Plantas , Fenotipo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/parasitología
3.
Plant Genome ; 10(2)2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28724080

RESUMEN

Three factors that directly affect the water inputs in cropping systems are root architecture, length of the growing season, and stomatal conductance to water vapor (). Deeper-rooted cultivars will perform better under water-limited conditions because they can access water stored deeper in the soil profile. Reduced limits transpiration rate () and thus throughout the vegetative phase conserves water that may be used during grain filling in water-limited environments. Additionally, growing early-maturing varieties in regions that rely on soil-stored water is a key water management strategy. To further our understanding of the genetic basis underlying root depth, growing season length, and we conducted a quantitative trait locus (QTL) study. A QTL for crown root angle (a proxy for root depth) new to sorghum was identified in chromosome 3. For , a QTL in chromosome seven was identified. In a follow-up field study it was determined that the QTL for was associated with reduced but not with net carbon assimilation rate () or shoot biomass. No differences in guard-cell length or stomatal density were observed among the lines, leading to the conclusion that the observed differences in must be explained by partial stomatal closure. The well-studied maturity gene was identified in the QTL for maturity. The transgressive segregation of the population was explained by the possible interaction of with other loci. Finally, the most probable position of the genes underlying the QTLs and candidate genes were proposed.


Asunto(s)
Raíces de Plantas/genética , Estomas de Plantas/fisiología , Sitios de Carácter Cuantitativo , Sorghum/genética , Biomasa , Carbono/metabolismo , Cromosomas de las Plantas , Hojas de la Planta/fisiología , Brotes de la Planta/metabolismo , Transpiración de Plantas , Polimorfismo de Nucleótido Simple , Sorghum/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA