Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Exp Cell Res ; 388(1): 111782, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31857114

RESUMEN

Three-dimensional (3D) cell culture conditions are often used to promote the differentiation of human cells as a prerequisite for the study of organotypic functions and environment-specific cellular responses. Here, we assessed the molecular and functional phenotype of vascular smooth muscle cells (VSMCs) cultured as 3D multilayered aggregates. Microarray studies revealed that these conditions decrease the expression of genes associated with cell cycle control and DNA replication and cease proliferation of VSMCs. This was accompanied by a lower activity level of the mitogen-activated protein kinase ERK1/2 and an increase in autocrine TGFß/SMAD2/3-mediated signaling - a determinant of VSMC differentiation. However, inhibition of TGFß signaling did not affect markers of VSMC differentiation such as smooth muscle myosin heavy chain (MYH11) but stimulated pro-inflammatory NFκB-associated gene expression in the first place while decreasing the protein level of NFKB1/p105 and NFKB2/p100 - inhibitors of NFκB transcriptional activity. Moreover, loss of TGFß signaling also revived VSMC proliferation in 3D aggregates. In conclusion, assembly of VSMCs in multilayered aggregates alters their transcriptome to translate the cellular organization into a resting phenotype. In this context, TGFß signaling appears to attenuate cell growth and NFκB-controlled gene expression representing important aspects of VSMC quiescence.


Asunto(s)
Diferenciación Celular , Regulación del Desarrollo de la Expresión Génica , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/metabolismo , Agregación Celular , Proliferación Celular , Células Cultivadas , Humanos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/fisiología , Cadenas Pesadas de Miosina/metabolismo , FN-kappa B/metabolismo , Transducción de Señal , Proteínas Smad/metabolismo , Transcriptoma , Factor de Crecimiento Transformador beta/metabolismo
2.
FASEB J ; 33(3): 3364-3377, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30383452

RESUMEN

The arterial wall adapts to alterations in blood flow and pressure by remodeling the cellular and extracellular architecture. Biomechanical stress of vascular smooth muscle cells (VSMCs) in the media is thought to precede this process and promote their activation and subsequent proliferation. However, molecular determinants orchestrating the transcriptional phenotype under these conditions have been insufficiently studied. We identified the transcription factor, nuclear factor of activated T cells 5 (NFAT5; or tonicity enhancer-binding protein) as a crucial regulatory element of mechanical stress responses of VSMCs. Here, the relevance of NFAT5 for arterial growth and thickening is investigated in mice upon inducible smooth muscle cell (SMC)-specific genetic ablation of Nfat5. In cultured mouse VSMCs, loss of Nfat5 inhibits the expression of gene sets involved in the control of the cell cycle and the interaction with the extracellular matrix and cytoskeletal dynamics. In vivo, SMC-specific knockout of Nfat5 did not affect the general vascular architecture and blood pressure levels under baseline conditions. However, proliferation of VSMCs and the thickening of the arterial wall were inhibited during both flow-induced collateral remodeling and hypertension-mediated arterial hypertrophy. Whereas originally described as a hypertonicity-responsive transcription factor, these findings identify NFAT5 as a novel molecular determinant of biomechanically induced phenotype changes of VSMCs and wall stress-induced arterial remodeling processes.-Arnold, C., Feldner, A., Zappe, M., Komljenovic, D., De La Torre, C., Ruzicka, P., Hecker, M., Neuhofer, W., Korff, T. Genetic ablation of NFAT5/TonEBP in smooth muscle cells impairs flow- and pressure-induced arterial remodeling in mice.


Asunto(s)
Presión Sanguínea/genética , Músculo Liso Vascular/fisiología , Miocitos del Músculo Liso/fisiología , Factores de Transcripción/genética , Remodelación Vascular/genética , Animales , Ciclo Celular/genética , Proliferación Celular/genética , Células Cultivadas , Matriz Extracelular/genética , Hipertensión/genética , Ratones , Flujo Sanguíneo Regional/genética
3.
FASEB J ; 32(4): 2021-2035, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29208700

RESUMEN

G protein-mediated signaling plays a decisive role in blood pressure regulation and the phenotype of vascular smooth muscle cells (VSMCs); however, the relevance of proteins that restrict G protein activity is not well characterized in this context. Here, we investigated the influence of regulator of G protein signaling 5 (RGS5), an inhibitor of Gαq/11 and Gαi/o activity, on blood pressure and the VSMC phenotype during experimental hypertension. In mice, loss of RGS5 did not affect baseline blood pressure, but prevented hypertension-induced structural remodeling. RGS5-deficient arterial VSMCs did not acquire a synthetic phenotype as evidenced by their inability to decrease the abundance of contractile markers-α-smooth muscle actin and smooth muscle-myosin heavy chain-or to proliferate under these conditions. Mechanistically, hypertensive pressure levels or biomechanical stretch are sufficient to increase the expression of RGS5. Loss of RGS5 severely impairs the activation of RhoA and stress fiber formation. In stretch-exposed VSMCs, RhoA activity was amplified upon inhibition of PKC, which mimics the downstream effects evoked by RGS5-mediated inhibition of Gαq/11 signaling. Collectively, our findings underline that RhoA activation may depend on the restriction of G protein activity and identify RGS5 as a mechanosensitive regulatory protein that is required to promote the synthetic VSMC phenotype as a prerequisite for structural renovation of the arterial wall during hypertension.-Arnold, C., Demirel, E., Feldner, A., Genové, G., Zhang, H., Sticht, C., Wieland, T., Hecker, M., Heximer, S., Korff, T. Hypertension-evoked RhoA activity in vascular smooth muscle cells requires RGS5.


Asunto(s)
Hipertensión/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Proteínas RGS/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Animales , Células Cultivadas , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Humanos , Masculino , Mecanotransducción Celular , Ratones , Ratones Endogámicos C57BL , Músculo Liso Vascular/citología , Miosinas/metabolismo , Proteína Quinasa C/metabolismo , Proteínas RGS/genética , Fibras de Estrés/metabolismo , Proteína de Unión al GTP rhoA
4.
FASEB J ; 28(8): 3518-27, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24769668

RESUMEN

Despite the high prevalence of venous diseases that are associated with and based on the structural reorganization of the venous vessel wall, not much is known about their mechanistic causes. In this context, we demonstrated that the quantity of myocardin, a transcriptional regulator of the contractile and quiescent smooth muscle cell phenotype, was diminished in proliferating synthetic venous smooth muscle cells (VSMCs) of human and mouse varicose veins by 51 and 60%, respectively. On the basis of the relevance of proteasomal activity for such phenotypic changes, we hypothesized that the observed VSMC activation is attenuated by the proteasome inhibitor bortezomib. This drug fully abolished VSMC proliferation and loss of myocardin in perfused mouse veins and blocked VSMC invasion in collagen gels by almost 80%. In line with this, topical transdermal treatment with bortezomib diminished VSMC proliferation by 80%, rescued 90% of VSMC myocardin abundance, and inhibited varicose-like venous remodeling by 67 to 72% in a mouse model. Collectively, our data indicate that the proteasome plays a pivotal role in VSMC phenotype changes during venous remodeling processes. Its inhibition protects from varicose-like vein remodeling in mice and may thus serve as a putative therapeutic strategy to treat human varicose veins.


Asunto(s)
Ácidos Borónicos/uso terapéutico , Miocitos del Músculo Liso/efectos de los fármacos , Inhibidores de Proteasas/uso terapéutico , Pirazinas/uso terapéutico , Várices/tratamiento farmacológico , Animales , Animales no Consanguíneos , Ácidos Borónicos/farmacología , Bortezomib , División Celular/efectos de los fármacos , Movimiento Celular , Células Cultivadas , Colágeno , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Humanos , Ratones , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Proteínas Nucleares/metabolismo , Inhibidores de Proteasas/farmacología , Complejo de la Endopetidasa Proteasomal/fisiología , Proteolisis , Pirazinas/farmacología , Esferoides Celulares , Transactivadores/metabolismo , Várices/enzimología , Várices/patología
5.
Circ Res ; 113(11): 1206-18, 2013 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-24025447

RESUMEN

RATIONALE: The formation of novel blood vessels is initiated by vascular endothelial growth factor. Subsequently, DLL4-Notch signaling controls the selection of tip cells, which guide new sprouts, and trailing stalk cells. Notch signaling in stalk cells is induced by DLL4 on the tip cells. Moreover, DLL4 and DLL1 are expressed in the stalk cell plexus to maintain Notch signaling. Notch loss-of-function causes formation of a hyperdense vascular network with disturbed blood flow. OBJECTIVE: This study was aimed at identifying novel modifiers of Notch signaling that interact with the intracellular domains of DLL1 and DLL4. METHODS AND RESULTS: Synaptojanin-2 binding protein (SYNJ2BP, also known as ARIP2) interacted with the PDZ binding motif of DLL1 and DLL4, but not with the Notch ligand Jagged-1. SYNJ2BP was preferentially expressed in stalk cells, enhanced DLL1 and DLL4 protein stability, and promoted Notch signaling in endothelial cells. SYNJ2BP induced expression of the Notch target genes HEY1, lunatic fringe (LFNG), and ephrin-B2, reduced phosphorylation of ERK1/2, and decreased expression of the angiogenic factor vascular endothelial growth factor (VEGF)-C. It inhibited the expression of genes enriched in tip cells, such as angiopoietin-2, ESM1, and Apelin, and impaired tip cell formation. SYNJ2BP inhibited endothelial cell migration, proliferation, and VEGF-induced angiogenesis. This could be rescued by blockade of Notch signaling or application of angiopoietin-2. SYNJ2BP-silenced human endothelial cells formed a functional vascular network in immunocompromised mice with significantly increased vascular density. CONCLUSIONS: These data identify SYNJ2BP as a novel inhibitor of tip cell formation, executing its functions predominately by promoting Delta-Notch signaling.


Asunto(s)
Proteínas Portadoras/fisiología , Péptidos y Proteínas de Señalización Intercelular/fisiología , Proteínas de la Membrana/fisiología , Neovascularización Fisiológica/fisiología , Receptores Notch/fisiología , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas de Unión al Calcio , Movimiento Celular/fisiología , Proliferación Celular , Células Cultivadas , Endotelio Vascular/citología , Endotelio Vascular/fisiología , Femenino , Humanos , Ratones , Ratones SCID , Modelos Animales , Transducción de Señal/fisiología , Factor A de Crecimiento Endotelial Vascular/fisiología
6.
FASEB J ; 25(10): 3613-21, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21685329

RESUMEN

An increase in circumferential wall tension (CWT) is an important determinant of vascular remodeling during hypertension or arteriosclerosis but also arteriogenesis. Although pivotal for such processes, the effect of this biomechanical force on venous remodeling has not yet been delineated. To this end, we raised the filling pressure in veins of the mouse auricle, which led to a 2.5-fold enlargement of these blood vessels within 4 d along with an increase in smooth muscle cell proliferation, matrix metalloproteinase 2 (MMP-2) expression and gelatinase activity. These changes were likewise observed in tissue samples of human varicose veins. Topical treatment of the auricles with a decoy oligonucleotide-neutralizing activator protein 1 (AP-1) inhibited these effects. Likewise, proliferation, MMP-2 expression, and gelatinase activity in both native and cultured venous smooth muscle cells exposed to enhanced stretch was decreased by up to 80% through inhibiting AP-1. In contrast, mutant control oligonucleotides had no effect on smooth muscle cell activation. These findings indicate that an increase in venous filling pressure and thus CWT is sufficient to activate AP-1, which, in turn, triggers varicose remodeling through fuelling MMP-2 activity and smooth muscle cell hyperplasia in the venous vessel wall.


Asunto(s)
Miocitos del Músculo Liso/metabolismo , Neovascularización Patológica/metabolismo , Factor de Transcripción AP-1/metabolismo , Animales , Células Cultivadas , Pabellón Auricular/irrigación sanguínea , Gelatinasas/metabolismo , Regulación de la Expresión Génica , Humanos , Hipertensión , Masculino , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Ratones , Presión , Factor de Transcripción AP-1/antagonistas & inhibidores , Factor de Transcripción AP-1/genética
7.
Arterioscler Thromb Vasc Biol ; 31(2): 297-305, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21127290

RESUMEN

OBJECTIVE: The expression of ephrinB2 in endothelial cells delineates their arterial phenotype and is a prerequisite for the development of the embryonic vasculature. Whereas the role of ephrinB2 in the microcirculation has been studied extensively, its expression and function in adult arteries is hardly understood. METHODS AND RESULTS: Our analyses showed that in mouse arteries, ephrinB2 is located on the luminal surface of endothelial cells and may physically interact with monocyte EphB receptors. Moreover, transdifferentiation of human monocytes into macrophages was associated with an increase in EphB2 expression, and exposing monocytes to immobilized ephrinB2 resulted in phosphorylation of the receptor followed by an increased expression of proinflammatory chemokines such as interleukin-8 and monocyte chemotactic protein-1/CCL2. Relating to the (patho)physiological relevance of these findings, immunofluorescence analyses revealed that ephrinB2 is most abundantly expressed in endothelial cells at arteriosclerosis predilection sites of the mouse aorta. Subsequent analyses indicated that monocyte adhesion to aortic segments abundantly expressing ephrinB2 is strongly enhanced and that endothelial cell ephrinB2 forward signaling is sufficient to upregulate cytokine expression in monocytes. CONCLUSIONS: These observations suggest a hitherto unknown link between vascular ephrinB2 expression and the proinflammatory activation of monocytes that may contribute to the pathogenesis of arteriosclerosis.


Asunto(s)
Arteriosclerosis/metabolismo , Endotelio Vascular/metabolismo , Efrina-B2/metabolismo , Monocitos/metabolismo , Animales , Arteriosclerosis/patología , Arteriosclerosis/fisiopatología , Biomarcadores/metabolismo , Adhesión Celular/fisiología , Células Cultivadas , Quimiocina CCL2/metabolismo , Modelos Animales de Enfermedad , Endotelio Vascular/citología , Humanos , Interleucina-8/metabolismo , Ratones , Ratones Endogámicos , Microcirculación/fisiología , Monocitos/citología , Regulación hacia Arriba/fisiología
8.
Front Physiol ; 9: 1190, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30190682

RESUMEN

Vascular cells are continuously exposed to mechanical stress that may wreak havoc if exceeding physiological levels. Consequently, mechanisms facing such a challenge are indispensable and contribute to the adaptation of the cellular phenotype. To this end, vascular smooth muscle cells (VSMCs) activate mechanoresponsive transcription factors promoting their proliferation and migration to initiate remodeling the arterial wall. In mechanostimulated VSMCs, we identified nuclear factor of activated T-cells 5 (NFAT5) as transcriptional regulator protein and intended to unravel mechanisms controlling its expression and nuclear translocation. In cultured human VSMCs, blocking RNA synthesis diminished both baseline and stretch-induced NFAT5 mRNA expression while inhibition of the proteasome promoted accumulation of the NFAT5 protein. Detailed PCR analyses indicated a decrease in expression of NFAT5 isoform A and an increase in isoform C in mechanoactivated VSMCs. Upon overexpression, only NFAT5c was capable to enter the nucleus in control- and stretch-stimulated VSMCs. As evidenced by analyses of NFAT5c mutants, nuclear translocation required palmitoylation, phosphorylation at Y143 and was inhibited by phosphorylation at S1197. On the functional level, overexpression of NFAT5c forces its accumulation in the nucleus as well as transcriptional activity and stimulated VSMC proliferation and migration. These findings suggest that NFAT5 is continuously expressed and degraded in resting VSMCs while expression and accumulation of isoform C in the nucleus is facilitated during biomechanical stress to promote an activated VSMC phenotype.

9.
Elife ; 72018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29620522

RESUMEN

Angiogenesis is coordinated by VEGF and Notch signaling. DLL4-induced Notch signaling inhibits tip cell formation and vessel branching. To ensure proper Notch signaling, receptors and ligands are clustered at adherens junctions. However, little is known about factors that control Notch activity by influencing the cellular localization of Notch ligands. Here, we show that the multiple PDZ domain protein (MPDZ) enhances Notch signaling activity. MPDZ physically interacts with the intracellular carboxyterminus of DLL1 and DLL4 and enables their interaction with the adherens junction protein Nectin-2. Inactivation of the MPDZ gene leads to impaired Notch signaling activity and increased blood vessel sprouting in cellular models and the embryonic mouse hindbrain. Tumor angiogenesis was enhanced upon endothelial-specific inactivation of MPDZ leading to an excessively branched and poorly functional vessel network resulting in tumor hypoxia. As such, we identified MPDZ as a novel modulator of Notch signaling by controlling ligand recruitment to adherens junctions.


Asunto(s)
Carcinoma Pulmonar de Lewis/irrigación sanguínea , Proteínas Portadoras/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Melanoma Experimental/irrigación sanguínea , Proteínas de la Membrana/metabolismo , Neovascularización Patológica/patología , Neovascularización Fisiológica , Receptores Notch/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas de Unión al Calcio , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patología , Células Cultivadas , Células Endoteliales de la Vena Umbilical Humana , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Receptores Notch/genética , Transducción de Señal
10.
EMBO Mol Med ; 9(7): 890-905, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28500065

RESUMEN

Hydrocephalus is a common congenital anomaly. LCAM1 and MPDZ (MUPP1) are the only known human gene loci associated with non-syndromic hydrocephalus. To investigate functions of the tight junction-associated protein Mpdz, we generated mouse models. Global Mpdz gene deletion or conditional inactivation in Nestin-positive cells led to formation of supratentorial hydrocephalus in the early postnatal period. Blood vessels, epithelial cells of the choroid plexus, and cilia on ependymal cells, which line the ventricular system, remained morphologically intact in Mpdz-deficient brains. However, flow of cerebrospinal fluid through the cerebral aqueduct was blocked from postnatal day 3 onward. Silencing of Mpdz expression in cultured epithelial cells impaired barrier integrity, and loss of Mpdz in astrocytes increased RhoA activity. In Mpdz-deficient mice, ependymal cells had morphologically normal tight junctions, but expression of the interacting planar cell polarity protein Pals1 was diminished and barrier integrity got progressively lost. Ependymal denudation was accompanied by reactive astrogliosis leading to aqueductal stenosis. This work provides a relevant hydrocephalus mouse model and demonstrates that Mpdz is essential to maintain integrity of the ependyma.


Asunto(s)
Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Modelos Animales de Enfermedad , Epéndimo/patología , Hidrocefalia/fisiopatología , Animales , Astrocitos/fisiología , Células Cultivadas , Células Epiteliales/fisiología , Eliminación de Gen , Técnicas de Silenciamiento del Gen , Humanos , Proteínas de la Membrana , Ratones
11.
EMBO Mol Med ; 6(8): 1075-89, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24972930

RESUMEN

Arteriogenesis-the growth of collateral arterioles-partially compensates for the progressive occlusion of large conductance arteries as it may occur as a consequence of coronary, cerebral or peripheral artery disease. Despite being clinically highly relevant, mechanisms driving this process remain elusive. In this context, our study revealed that abundance of regulator of G-protein signalling 5 (RGS5) is increased in vascular smooth muscle cells (SMCs) of remodelling collateral arterioles. RGS5 terminates G-protein-coupled signalling cascades which control contractile responses of SMCs. Consequently, overexpression of RGS5 blunted Gαq/11-mediated mobilization of intracellular calcium, thereby facilitating Gα12/13-mediated RhoA signalling which is crucial for arteriogenesis. Knockdown of RGS5 evoked opposite effects and thus strongly impaired collateral growth as evidenced by a blockade of RhoA activation, SMC proliferation and the inability of these cells to acquire an activated phenotype in RGS5-deficient mice after the onset of arteriogenesis. Collectively, these findings establish RGS5 as a novel determinant of arteriogenesis which shifts G-protein signalling from Gαq/11-mediated calcium-dependent contraction towards Gα12/13-mediated Rho kinase-dependent SMC activation.


Asunto(s)
Arteriolas/crecimiento & desarrollo , Proteínas RGS/metabolismo , Animales , Proliferación Celular , Subunidades alfa de la Proteína de Unión al GTP G12-G13/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Técnicas de Silenciamiento del Gen , Ratones , Ratones Noqueados , Miocitos del Músculo Liso/fisiología , Proteínas RGS/genética , Proteína de Unión al GTP rhoA/metabolismo
12.
Cardiovasc Res ; 96(1): 120-9, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-22843699

RESUMEN

AIMS: Hypertension evokes detrimental changes in the arterial vessel wall that facilitate stiffening and thus lead to a further rise in mean blood pressure, eventually causing heart failure. The underlying pathophysiological remodelling process is elicited by an increase in wall stress (WS) and is strictly dependent on the activation of vascular smooth muscle cells (SMC). However, it remains unclear as to why these cells fail to maintain their contractile and quiescent phenotype in a hypertensive environment. METHODS AND RESULTS: In this context, we reveal that the knockdown of myocardin--a pivotal transcriptional determinant of the contractile SMC phenotype--is sufficient to induce SMC proliferation. In line with this observation, immunofluorescence analysis of the media of remodelling arteries from hypertensive mice demonstrated a significant decrease in the abundance of myocardin and an increase in SMC proliferation. Subsequent analyses of isolated perfused mouse arteries and human cultured SMCs exposed to cyclic stretch (i.e. mimicking one component of WS) suggested that this biomechanical force facilitates serine phosphorylation of myocardin. Furthermore, this biomechanical stimulus promotes rapid translocation of myocardin from the nucleus to the cytoplasm, inhibits its mRNA expression, and causes proteasomal degradation of the cytoplasmic protein. CONCLUSIONS: Collectively, these findings suggest that hypertension negates the activity of myocardin in SMCs on multiple levels, hence eliminating a crucial determinant of SMC quiescence. This mechanism may control the initial switch from the contractile towards the synthetic SMC phenotype during hypertension and may offer an interesting novel approach to prevent cardiovascular disease.


Asunto(s)
Arterias/fisiopatología , Hipertensión/fisiopatología , Miocitos del Músculo Liso/fisiología , Proteínas Nucleares/metabolismo , Transactivadores/metabolismo , Animales , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Núcleo Celular/metabolismo , Proliferación Celular , Células Cultivadas , Citoplasma/metabolismo , Regulación hacia Abajo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Fenotipo , Fosforilación , Complejo de la Endopetidasa Proteasomal/metabolismo , ARN Mensajero/metabolismo , Calponinas
13.
PLoS One ; 7(12): e53074, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23300864

RESUMEN

The Delta-Notch pathway is a signal exchanger between adjacent cells to regulate numerous differentiation steps during embryonic development. Blood vessel formation by sprouting angiogenesis requires high expression of the Notch ligand DLL4 in the leading tip cell, while Notch receptors in the trailing stalk cells are activated by DLL4 to achieve strong Notch signaling activity. Upon ligand binding, Notch receptors are cleaved by ADAM proteases and gamma-secretase. This releases the intracellular Notch domain that acts as a transcription factor. There is evidence that also Notch ligands (DLL1, DLL4, JAG1, JAG2) are processed upon receptor binding to influence transcription in the ligand-expressing cell. Thus, the existence of bi-directional Delta-Notch signaling has been proposed. We report here that the Notch ligands DLL1 and JAG1 are processed in endothelial cells in a gamma-secretase-dependent manner and that the intracellular ligand domains accumulate in the cell nucleus. Overexpression of JAG1 intracellular domain (ICD) as well as DLL1-ICD, DLL4-ICD and NOTCH1-ICD inhibited endothelial proliferation. Whereas NOTCH1-ICD strongly repressed endothelial migration and sprouting angiogenesis, JAG1-ICD, DLL1-ICD and DLL4-ICD had no significant effects. Consistently, global gene expression patterns were only marginally affected by the processed Notch ligands. In addition to its effects as a transcription factor, NOTCH1-ICD promotes cell adhesion to the extracellular matrix in a transcription-independent manner. However, JAG1-ICD, DLL1-ICD and DLL4-ICD did not influence endothelial cell adhesion. In summary, reverse signaling of Notch ligands appears to be dispensable for angiogenesis in cellular systems.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de la Membrana/metabolismo , Neovascularización Fisiológica/fisiología , Receptor Notch1/metabolismo , Transducción de Señal/fisiología , Proteínas Adaptadoras Transductoras de Señales , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Proteínas de Unión al Calcio/genética , Adhesión Celular/fisiología , Movimiento Celular/fisiología , Proliferación Celular , Células Cultivadas , Perfilación de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Proteína Jagged-1 , Proteínas de la Membrana/genética , Receptor Notch1/genética , Proteínas Serrate-Jagged
14.
Cardiovasc Res ; 94(3): 510-8, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22505659

RESUMEN

AIMS: Adequate endothelial cell stimulation is a prerequisite for the adaptive remodelling of macro- and microvessels. A pivotal autocrine mechanism following endothelial cell activation is the release of angiopoietin-2 (Ang-2), which subsequently antagonizes the binding of Ang-1 to the Tie-2 receptor, thus sensitizing the endothelial cells to pro-angiogenic and/or pro-inflammatory stimuli. Based on the observation that hypertension in mice reduces the abundance of Ang-2 stored in arterial endothelial cells, this study was aimed at testing the hypothesis that an increase in wall stress (WS) or stretch-a hallmark of hypertension-is sufficient to release Ang-2 from endothelial cells. METHODS AND RESULTS: In fact, stretching of isolated perfused mouse arteries or human cultured endothelial cells rapidly elicited an increased release of Ang-2. In the cultured endothelial cells, this was preceded by a transient rise in intracellular free calcium, abrogated through calcium chelation and accompanied by a decrease in Tie-2 phosphorylation. Interestingly, Ang-1 abolished the stretch-induced release of Ang-2 from both cultured and native endothelial cells through inhibiting the stretch-dependent mobilization of intracellular calcium. CONCLUSION: Collectively, these results indicate that increased WS or stretch facilitates the release of Ang-2 from endothelial cell Weibel-Palade bodies, and that Ang-1 can block this by attenuating the stretch-mediated rise in intracellular calcium.


Asunto(s)
Angiopoyetina 1/farmacología , Angiopoyetina 2/metabolismo , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Hipertensión/fisiopatología , Animales , Calcio/metabolismo , Células Cultivadas , Endotelio Vascular/citología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Receptor TIE-2/metabolismo
15.
J Clin Invest ; 120(7): 2307-18, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20551518

RESUMEN

Cellular contractility and, thus, the ability to alter cell shape are prerequisites for a number of important biological processes such as cytokinesis, movement, differentiation, and substrate adherence. The contractile capacity of vascular smooth muscle cells (VSMCs) is pivotal for the regulation of vascular tone and thus blood pressure and flow. Here, we report that conditional ablation of the transcriptional regulator Junb results in impaired arterial contractility in vivo and in vitro. This was exemplified by resistance of Junb-deficient mice to DOCA-salt-induced volume-dependent hypertension as well as by a decreased contractile capacity of isolated arteries. Detailed analyses of Junb-deficient VSMCs, mouse embryonic fibroblasts, and endothelial cells revealed a general failure in stress fiber formation and impaired cellular motility. Concomitantly, we identified myosin regulatory light chain 9 (Myl9), which is critically involved in actomyosin contractility and stress fiber assembly, as a Junb target. Consistent with these findings, reexpression of either Junb or Myl9 in Junb-deficient cells restored stress fiber formation, cellular motility, and contractile capacity. Our data establish a molecular link between the activator protein-1 transcription factor subunit Junb and actomyosin-based cellular motility as well as cellular and vascular contractility by governing Myl9 transcription.


Asunto(s)
Movimiento Celular/fisiología , Regulación de la Expresión Génica , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Proteínas Proto-Oncogénicas c-jun/metabolismo , Actomiosina/metabolismo , Animales , Arterias/metabolismo , Presión Sanguínea , Diferenciación Celular , Células/metabolismo , Citoesqueleto/metabolismo , Fibroblastos/metabolismo , Hipertensión/metabolismo , Ratones , Ratones Transgénicos , Contracción Muscular , Factor de Transcripción AP-1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA