Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Diabetologia ; 64(5): 1133-1143, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33558985

RESUMEN

AIMS/HYPOTHESIS: Acute hyperglycaemia stimulates pancreatic beta cell proliferation in the mouse whereas chronic hyperglycaemia appears to be toxic. We hypothesise that this toxic effect is mediated by increased beta cell workload, unrelated to hyperglycaemia per se. METHODS: To test this hypothesis, we developed a novel mouse model of cell-autonomous increased beta cell glycolytic flux caused by a conditional heterozygous beta cell-specific mutation that activates glucokinase (GCK), mimicking key aspects of the rare human genetic disease GCK-congenital hyperinsulinism. RESULTS: In the mutant mice, we observed random and fasting hypoglycaemia (random 4.5-5.4 mmol/l and fasting 3.6 mmol/l) that persisted for 15 months. GCK activation led to increased beta cell proliferation as measured by Ki67 expression (2.7% vs 1.5%, mutant and wild-type (WT), respectively, p < 0.01) that resulted in a 62% increase in beta cell mass in young mice. However, by 8 months of age, mutant mice developed impaired glucose tolerance, which was associated with decreased absolute beta cell mass from 2.9 mg at 1.5 months to 1.8 mg at 8 months of age, with preservation of individual beta cell function. Impaired glucose tolerance was further exacerbated by a high-fat/high-sucrose diet (AUC 1796 vs 966 mmol/l × min, mutant and WT, respectively, p < 0.05). Activation of GCK was associated with an increased DNA damage response and an elevated expression of Chop, suggesting metabolic stress as a contributor to beta cell death. CONCLUSIONS/INTERPRETATION: We propose that increased workload-driven biphasic beta cell dynamics contribute to decreased beta cell function observed in long-standing congenital hyperinsulinism and type 2 diabetes.


Asunto(s)
Hiperinsulinismo Congénito/patología , Glucoquinasa/genética , Células Secretoras de Insulina/patología , Animales , Recuento de Células , Hiperinsulinismo Congénito/genética , Hiperinsulinismo Congénito/metabolismo , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/patología , Modelos Animales de Enfermedad , Femenino , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/patología , Masculino , Ratones , Ratones Transgénicos , Mutación , Tamaño de los Órganos
2.
Mol Metab ; 42: 101057, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32739450

RESUMEN

OBJECTIVE: Dedifferentiation of pancreatic ß-cells may reduce islet function in type 2 diabetes (T2D). However, the prevalence, plasticity and functional consequences of this cellular state remain unknown. METHODS: We employed single-cell RNAseq to detail the maturation program of α- and ß-cells during human ontogeny. We also compared islets from non-diabetic and T2D individuals. RESULTS: Both α- and ß-cells mature in part by repressing non-endocrine genes; however, α-cells retain hallmarks of an immature state, while ß-cells attain a full ß-cell specific gene expression program. In islets from T2D donors, both α- and ß-cells have a less mature expression profile, de-repressing the juvenile genetic program and exocrine genes and increasing expression of exocytosis, inflammation and stress response signalling pathways. These changes are consistent with the increased proportion of ß-cells displaying suboptimal function observed in T2D islets. CONCLUSIONS: These findings provide new insights into the molecular program underlying islet cell maturation during human ontogeny and the loss of transcriptomic maturity that occurs in islets of type 2 diabetics.


Asunto(s)
Desdiferenciación Celular/genética , Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Desdiferenciación Celular/fisiología , Biología Computacional/métodos , Diabetes Mellitus Tipo 2/fisiopatología , Exocitosis/fisiología , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica/genética , Células Secretoras de Glucagón/metabolismo , Células Secretoras de Glucagón/fisiología , Humanos , Inflamación/metabolismo , Células Secretoras de Insulina/fisiología , Islotes Pancreáticos/metabolismo , Páncreas/metabolismo , Cultivo Primario de Células , Transducción de Señal/fisiología , Análisis de la Célula Individual/métodos , Transcriptoma/genética
3.
J Clin Invest ; 129(1): 209-214, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30352048

RESUMEN

The loss of insulin-secreting ß cells is characteristic among type I and type II diabetes. Stimulating proliferation to expand sources of ß cells for transplantation remains a challenge because adult ß cells do not proliferate readily. The cell cycle inhibitor p57 has been shown to control cell division in human ß cells. Expression of p57 is regulated by the DNA methylation status of the imprinting control region 2 (ICR2), which is commonly hypomethylated in Beckwith-Wiedemann syndrome patients who exhibit massive ß cell proliferation. We hypothesized that targeted demethylation of the ICR2 using a transcription activator-like effector protein fused to the catalytic domain of TET1 (ICR2-TET1) would repress p57 expression and promote cell proliferation. We report here that overexpression of ICR2-TET1 in human fibroblasts reduces p57 expression levels and increases proliferation. Furthermore, human islets overexpressing ICR2-TET1 exhibit repression of p57 with concomitant upregulation of Ki-67 while maintaining glucose-sensing functionality. When transplanted into diabetic, immunodeficient mice, the epigenetically edited islets show increased ß cell replication compared with control islets. These findings demonstrate that epigenetic editing is a promising tool for inducing ß cell proliferation, which may one day alleviate the scarcity of transplantable ß cells for the treatment of diabetes.


Asunto(s)
Síndrome de Beckwith-Wiedemann/metabolismo , Proliferación Celular , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/biosíntesis , Desmetilación del ADN , Sitios Genéticos , Células Secretoras de Insulina/metabolismo , Regulación hacia Arriba , Síndrome de Beckwith-Wiedemann/patología , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Células Secretoras de Insulina/patología , Antígeno Ki-67/biosíntesis
4.
J Clin Invest ; 127(1): 230-243, 2017 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-27941241

RESUMEN

Type 2 diabetes is thought to involve a compromised ß cell differentiation state, but the mechanisms underlying this dysfunction remain unclear. Here, we report a key role for the TF PAX6 in the maintenance of adult ß cell identity and function. PAX6 was downregulated in ß cells of diabetic db/db mice and in WT mice treated with an insulin receptor antagonist, revealing metabolic control of expression. Deletion of Pax6 in ß cells of adult mice led to lethal hyperglycemia and ketosis that were attributed to loss of ß cell function and expansion of α cells. Lineage-tracing, transcriptome, and chromatin analyses showed that PAX6 is a direct activator of ß cell genes, thus maintaining mature ß cell function and identity. In parallel, we found that PAX6 binds promoters and enhancers to repress alternative islet cell genes including ghrelin, glucagon, and somatostatin. Chromatin analysis and shRNA-mediated gene suppression experiments indicated a similar function of PAX6 in human ß cells. We conclude that reduced expression of PAX6 in metabolically stressed ß cells may contribute to ß cell failure and α cell dysfunction in diabetes.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Cetoacidosis Diabética/metabolismo , Células Secretoras de Glucagón/metabolismo , Hiperglucemia/metabolismo , Células Secretoras de Insulina/metabolismo , Factor de Transcripción PAX6/biosíntesis , Animales , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patología , Cetoacidosis Diabética/genética , Cetoacidosis Diabética/patología , Elementos de Facilitación Genéticos , Eliminación de Gen , Regulación de la Expresión Génica , Células Secretoras de Glucagón/patología , Hiperglucemia/genética , Hiperglucemia/patología , Células Secretoras de Insulina/patología , Ratones , Ratones Transgénicos , Factor de Transcripción PAX6/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA