Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 226
Filtrar
Más filtros

Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 107(10): 3143-3151, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37039848

RESUMEN

One of the critical steps of the biotechnological production of xylitol from lignocellulosic biomass is the deconstruction of the plant cell wall. This step is crucial to the bioprocess once the solubilization of xylose from hemicellulose is allowed, which can be easily converted to xylitol by pentose-assimilating yeasts in a microaerobic environment. However, lignocellulosic toxic compounds formed/released during plant cell wall pretreatment, such as aliphatic acids, furans, and phenolic compounds, inhibit xylitol production during fermentation, reducing the fermentative performance of yeasts and impairing the bioprocess productivity. Although the toxicity of lignocellulosic inhibitors is one of the biggest bottlenecks of the biotechnological production of xylitol, most of the studies focus on how much xylitol production is inhibited but not how and where cells are affected. Understanding this mechanism is important in order to develop strategies to overcome lignocellulosic inhibitor toxicity. In this mini-review, we addressed how these inhibitors affect both yeast physiology and metabolism and consequently xylose-to-xylitol bioconversion. In addition, this work also addresses about cellular adaptation, one of the most relevant strategies to overcome lignocellulosic inhibitors toxicity, once it allows the development of robust and tolerant strains, contributing to the improvement of the microbial performance against hemicellulosic hydrolysates toxicity. KEY POINTS: • Impact of lignocellulosic inhibitors on the xylitol production by yeasts • Physiological and metabolic alterations provoked by lignocellulosic inhibitors • Cell adaptation as an efficient strategy to improve yeast's robustness.


Asunto(s)
Saccharomyces cerevisiae , Xilitol , Saccharomyces cerevisiae/metabolismo , Xilosa/metabolismo , Lignina/metabolismo , Fermentación
2.
Biotechnol Appl Biochem ; 70(6): 2069-2087, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37694532

RESUMEN

Candida tropicalis is a nonconventional yeast with medical and industrial significance, belonging to the CTG clade. Recent advancements in whole-genome sequencing and genetic analysis revealed its close relation to other unconventional yeasts of biotechnological importance. C. tropicalis is known for its immense potential in synthesizing various valuable biomolecules such as ethanol, xylitol, biosurfactants, lipids, enzymes, α,ω-dicarboxylic acids, single-cell proteins, and more, making it an attractive target for biotechnological applications. This review provides an update on C. tropicalis biological characteristics and its efficiency in producing a diverse range of biomolecules with industrial significance from various feedstocks. The information presented in this review contributes to a better understanding of C. tropicalis and highlights its potential for biotechnological applications and market viability.


Asunto(s)
Biotecnología , Candida tropicalis , Candida tropicalis/genética , Candida tropicalis/metabolismo
3.
Immunology ; 165(1): 110-121, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34458991

RESUMEN

Decades of studies on antibody structure led to the tenet that the V region binds antigens while the C region interacts with immune effectors. In some antibodies, however, the C region affects affinity and/or specificity for the antigen. One example is the 3E5 monoclonal murine IgG family, in which the mIgG3 isotype has different fine specificity to the Cryptococcus neoformans capsule polysaccharide than the other mIgG isotypes despite their identical variable sequences. Our group serendipitously found another pair of mIgG1/mIgG3 antibodies based on the 2H1 hybridoma to the C. neoformans capsule that recapitulated the differences observed with 3E5. In this work, we report the molecular basis of the constant domain effects on antigen binding using recombinant antibodies. As with 3E5, immunofluorescence experiments show a punctate pattern for 2H1-mIgG3 and an annular pattern for 2H1-mIgG1; these binding patterns have been associated with protective efficacy in murine cryptococcosis. Also as observed with 3E5, 2H1-mIgG3 bound on ELISA to both acetylated and non-acetylated capsular polysaccharide, whereas 2H1-mIgG1 only bound well to the acetylated form, consistent with differences in fine specificity. In engineering hybrid mIgG1/mIgG3 antibodies, we found that switching the 2H1-mIgG3 hinge for its mIgG1 counterpart changed the immunofluorescence pattern to annular, but a 2H1-mIgG1 antibody with an mIgG3 hinge still had an annular pattern. The hinge is thus necessary but not sufficient for these changes in binding to the antigen. This important role for the constant region in antigen binding could affect antibody biology and engineering.


Asunto(s)
Antígenos Bacterianos/química , Antígenos Bacterianos/inmunología , Cápsulas Bacterianas/química , Cápsulas Bacterianas/inmunología , Cryptococcus neoformans/inmunología , Inmunoglobulina G/química , Inmunoglobulina G/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Sitios de Unión de Anticuerpos , Células CHO , Línea Celular , Cricetulus , Criptococosis/inmunología , Epítopos/química , Epítopos/inmunología , Ratones , Proteínas Recombinantes de Fusión , Relación Estructura-Actividad
4.
Appl Microbiol Biotechnol ; 106(12): 4587-4606, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35708749

RESUMEN

The transport of substrates across the cell membrane plays an essential role in nutrient assimilation by yeasts. The establishment of an efficient microbial cell factory, based on the maximum use of available carbon sources, can generate new technologies that allow the full use of lignocellulosic constituents. These technologies are of interest because they could promote the formation of added-value products with economic feasibility. In silico analyses were performed to investigate gene sequences capable of encoding xylose transporter proteins in the Candida tropicalis genome. The current study identified 11 putative transport proteins that have not yet been functionally characterized. A phylogenetic tree highlighted the potential C. tropicalis xylose-transporter proteins CtXUT1, CtXUT4, CtSTL1, CtSTL2, and CtGXT2, which were homologous to previously characterized and reported xylose transporters. Their expression was quantified through real-time qPCR at defined times, determined through a kinetic analysis of the microbial growth curve in the absence/presence of glucose supplemented with xylose as the main carbon source. The results indicated different mRNA expression levels for each gene. CtXUT1 mRNA expression was only found in the absence of glucose in the medium. Maximum CtXUT1 expression was observed in intervals of the highest xylose consumption (21 to 36 h) that corresponded to consumption rates of 1.02 and 0.82 g/L/h in the formulated media, with xylose as the only carbon source and with glucose addition. These observations indicate that CtXUT1 is an important xylose transporter in C. tropicalis. KEY POINTS: • Putative xylose transporter proteins were identified in Candida tropicalis; • The glucose concentration in the cultivation medium plays a key role in xylose transporter regulation; • The transporter gene CtXUT1 has an important role in xylose consumption by Candida tropicalis.


Asunto(s)
Candida tropicalis , Xilosa , Candida tropicalis/genética , Candida tropicalis/metabolismo , Carbono/metabolismo , Proteínas Portadoras/genética , Biología Computacional , Fermentación , Expresión Génica , Glucosa/metabolismo , Cinética , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Pentosas/metabolismo , Filogenia , ARN Mensajero/metabolismo , Xilitol , Xilosa/metabolismo
5.
Transgenic Res ; 30(4): 551-584, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33970411

RESUMEN

Genome editing in agriculture and food is leading to new, improved crops and other products. Depending on the regulatory approach taken in each country or region, commercialization of these crops and products may or may not require approval from the respective regulatory authorities. This paper describes the regulatory landscape governing genome edited agriculture and food products in a selection of countries and regions.


Asunto(s)
Biotecnología/legislación & jurisprudencia , Productos Agrícolas/genética , Alimentos Modificados Genéticamente/normas , Edición Génica , Genoma de Planta , Regulación Gubernamental , Plantas Modificadas Genéticamente/genética , Salud Global , Humanos
6.
J Immunol ; 202(9): 2782-2794, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30894426

RESUMEN

Abs exert several of their effector functions by binding to cell surface receptors. For murine IgG3 (mIgG3), the identity of its receptors (and the very existence of a receptor) is still under debate, as not all mIgG3 functions can be explained by interaction with FcγRI. This implies the existence of an alternate receptor, whose identity we sought to pinpoint. We found that blockage of integrin ß1 selectively hampered binding of mIgG3 to macrophages and mIgG3-mediated phagocytosis. Manganese, an integrin activator, increased mIgG3 binding to macrophages. Blockage of FcγRI or Itgb1 inhibited binding of different mIgG3 Abs to variable extents. Our results are consistent with the notion that Itgb1 functions as part of an IgG receptor complex. Given the more ancient origin of integrins in comparison with FcγR, this observation could have far-ranging implications for our understanding of the evolution of Ab-mediated immunity as well as in immunity to microorganisms, pathogenesis of autoimmune diseases, and Ab engineering.


Asunto(s)
Inmunoglobulina G/inmunología , Integrina beta1/inmunología , Macrófagos/inmunología , Fagocitosis , Receptores de IgG/inmunología , Animales , Inmunoglobulina G/genética , Integrina beta1/genética , Ratones , Ratones Noqueados , Receptores de IgG/genética
7.
Cereb Cortex ; 30(2): 505-524, 2020 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-31240311

RESUMEN

Phosphatase and tensin homolog on chromosome 10 (PTEN) is a tumor suppressor and autism-associated gene that exerts an important influence over neuronal structure and function during development. In addition, it participates in synaptic plasticity processes in adulthood. As an attempt to assess synaptic and developmental mechanisms by which PTEN can modulate cognitive function, we studied the consequences of 2 different genetic manipulations in mice: presence of additional genomic copies of the Pten gene (Ptentg) and knock-in of a truncated Pten gene lacking its PDZ motif (Pten-ΔPDZ), which is required for interaction with synaptic proteins. Ptentg mice exhibit substantial microcephaly, structural hypoconnectivity, enhanced synaptic depression at cortico-amygdala synapses, reduced anxiety, and intensified social interactions. In contrast, Pten-ΔPDZ mice have a much more restricted phenotype, with normal synaptic connectivity, but impaired synaptic depression at cortico-amygdala synapses and virtually abolished social interactions. These results suggest that synaptic actions of PTEN in the amygdala contribute to specific behavioral traits, such as sociability. Also, PTEN appears to function as a bidirectional rheostat in the amygdala: reduction in PTEN activity at synapses is associated with less sociability, whereas enhanced PTEN activity accompanies hypersocial behavior.


Asunto(s)
Amígdala del Cerebelo/fisiología , Corteza Cerebral/fisiología , Plasticidad Neuronal , Fosfohidrolasa PTEN/fisiología , Conducta Social , Amígdala del Cerebelo/ultraestructura , Animales , Femenino , Hipocampo/fisiología , Masculino , Memoria/fisiología , Ratones Transgénicos , Sinapsis/fisiología , Sinapsis/ultraestructura
8.
Fungal Genet Biol ; 140: 103368, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32201128

RESUMEN

Ergosterol is the most important membrane sterol in fungal cells and a component not found in the membranes of human cells. We identified the ERG6 gene in the AIDS-associated fungal pathogen, Cryptococcus neoformans, encoding the sterol C-24 methyltransferase of fungal ergosterol biosynthesis. In this work, we have explored its relationship with high-temperature growth and virulence of C. neoformans by the construction of a loss-of-function mutant. In contrast to other genes involved in ergosterol biosynthesis, C. neoformans ERG6 is not essential for growth under permissive conditions in vitro. However, the erg6 mutant displayed impaired thermotolerance and increased susceptibility to osmotic and oxidative stress, as well as to different antifungal drugs. Total lipid analysis demonstrated a decrease in the erg6Δ strain membrane ergosterol content. In addition, this mutant strain was avirulent in an invertebrate model of C. neoformans infection. C. neoformans Erg6 was cyto-localized in the endoplasmic reticulum and Golgi complex. Our results demonstrate that Erg6 is crucial for growth at high temperature and virulence, likely due to its effects on C. neoformans membrane integrity and dynamics. These pathogen-focused investigations into ergosterol biosynthetic pathway components reinforce the multiple roles of ergosterol in the response of diverse fungal species to alterations in the environment, especially that of the infected host. These studies open perspectives to understand the participation of ergosterol in mechanism of resistance to azole and polyene drugs. Observed synergistic growth defects with co-inhibition of Erg6 and other components of the ergosterol biosynthesis pathway suggests novel approaches to treatment in human fungal infections.


Asunto(s)
Criptococosis/genética , Cryptococcus neoformans/genética , Ergosterol/biosíntesis , Metiltransferasas/genética , Antifúngicos/farmacología , Azoles/farmacología , Vías Biosintéticas/efectos de los fármacos , Criptococosis/tratamiento farmacológico , Criptococosis/microbiología , Cryptococcus neoformans/patogenicidad , Retículo Endoplásmico/efectos de los fármacos , Ergosterol/genética , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Humanos , Mutación/efectos de los fármacos , Virulencia/genética
9.
Fungal Genet Biol ; 138: 103367, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32198121

RESUMEN

Filamentous fungi are well known for producing secondary metabolites applied in various industrial segments. Among these, lovastatin and itaconic acid, produced by Aspergillus terreus, have applications in the pharmaceutical and chemical industries. Lovastatin is primarily used for the control of hypercholesterolemia, while itaconic acid is a building block for the production of synthetic fibers, coating adhesives, among others. In this study, for the first time, 35 strains of Aspergillus sp. from four Brazilian culture collections were evaluated for lovastatin and itaconic acid production and compared to a reference strain, ATCC 20542. From an initial screening, the strains ATCC 20542, URM 224, URM1876, URM 5061, URM 5254, URM 5256, URM 5650, and URM 5961 were selected for genomic comparison. Among tested strains, the locus corresponding to the lovastatin genomic cluster was assembled, showing that all genes essential for lovastatin biosynthesis were present in producing URM 5961 and URM 5650 strains, with 100% and 98.5% similarity to ATCC 20542, respectively. However, in the no producing URM 1876, URM 224, URM 5254, URM 5061, and URM 5256 strains, this cluster was either fragmented or missing. Among the 35 strains evaluated for itaconic acid production in this study, only three strains had titers above 0.5 g/L, 16 strains had production below 0.5 g/L, and the remaining 18 strains had no production, with the highest production of itaconic acid observed in the URM 5254 strain with 2.2 g/L. The essential genes for itaconic acid production, mttA, cadA msfA were also mapped, where all three genes linked to itaconic acid production were found in a single contig in the assembly of each strain. In contrast to lovastatin loci, there is no correlation between the level of itaconic acid production and genetic polymorphisms in the genes associated with its biosynthesis.


Asunto(s)
Aspergillus , Lovastatina , Succinatos , Aspergillus/genética , Aspergillus/metabolismo , Biodiversidad , Brasil , Genes Fúngicos , Variación Genética , Genoma Fúngico , Lovastatina/biosíntesis , Lovastatina/genética , Filogenia , Succinatos/metabolismo
10.
Fungal Genet Biol ; 140: 103395, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32325168

RESUMEN

Paracoccidioidomycosis (PCM) is a life-threatening systemic mycosis widely reported in the Gran Chaco ecosystem. The disease is caused by different species from the genus Paracoccidioides, which are all endemic to South and Central America. Here, we sequenced and analyzed 31 isolates of Paracoccidioides across South America, with particular focus on isolates from Argentina and Paraguay. The de novo sequenced isolates were compared with publicly available genomes. Phylogenetics and population genomics revealed that PCM in Argentina and Paraguay is caused by three distinct Paracoccidioides genotypes, P. brasiliensis (S1a and S1b) and P. restrepiensis (PS3). P. brasiliensis S1a isolates from Argentina are frequently associated with chronic forms of the disease. Our results suggest the existence of extensive molecular polymorphism among Paracoccidioides species, and provide a framework to begin to dissect the connection between genotypic differences in the pathogen and the clinical outcomes of the disease.


Asunto(s)
Variación Genética/genética , Genómica , Paracoccidioides/genética , Paracoccidioidomicosis/genética , Argentina/epidemiología , Ecosistema , Genética de Población , Genoma Fúngico/genética , Genotipo , Humanos , Paracoccidioides/clasificación , Paracoccidioides/patogenicidad , Paracoccidioidomicosis/clasificación , Paracoccidioidomicosis/epidemiología , Paracoccidioidomicosis/microbiología , Paraguay/epidemiología , Filogenia
11.
Bioprocess Biosyst Eng ; 43(12): 2153-2163, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32627063

RESUMEN

Apple pomace was studied as a raw material for the production of xylitol and 2G ethanol, since this agroindustrial residue has a high concentration of carbohydrate macromolecules, but is still poorly studied for the production of fermentation bioproducts, such as polyols. The dry biomass was subjected to dilute-acid hydrolysis with H2SO4 to obtain the hemicellulosic hydrolysate, which was concentrated, detoxified and fermented. The hydrolyzate after characterization was submitted to submerged fermentations, which were carried out in Erlenmeyer flasks using, separately, the yeasts Candida guilliermondii and Kluyveromyces marxianus. High cellulose (32.62%) and hemicellulose (23.60%) contents were found in this biomass, and the chemical hydrolysis yielded appreciable quantities of fermentable sugars, especially xylose. Both yeasts were able to metabolize xylose, but Candida guilliermondii produced only xylitol (9.35 g L-1 in 96 h), while K. marxianus produced ethanol as the main product (10.47 g L-1 in 24 h) and xylitol as byproduct (9.10 g L-1 xylitol in 96 h). Maximum activities of xylose reductase and xylitol dehydrogenase were verified after 24 h of fermentation with C. guilliermondii (0.23 and 0.53 U/mgprot, respectively) and with K. marxianus (0.08 e 0.08 U/mgprot, respectively). Apple pomace has shown potential as a raw material for the fermentation process, and the development of a biotechnological platform for the integrated use of both the hemicellulosic and cellulosic fraction could add value to this residue and the apple production chain.


Asunto(s)
Biotecnología/métodos , Etanol/química , Malus/metabolismo , Xilitol/química , Aldehído Reductasa/química , Biomasa , Reactores Biológicos , Candida , Celulosa/metabolismo , D-Xilulosa Reductasa/química , Fermentación , Glucosa/metabolismo , Hidrólisis , Kluyveromyces , Polímeros/química , Polisacáridos/química , Saccharomycetales , Factores de Tiempo , Xilosa/metabolismo
12.
Crit Rev Biotechnol ; 39(7): 924-943, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31311338

RESUMEN

Recent advances in biomass conversion technologies have shown a promising future toward fermentation during xylitol production. Xylitol is one of the top 12 renewable added-value chemicals that can be obtained from biomass according to US Department of Energy (USDOE). Currently, xylitol accounts for approximately US$823.6 million of annual sales in the market, and this amount is expected to reach US$1.37 billion by 2025. This high demand has been achieved owing to the chemical conversion of hemicellulosic hydrolysates from different lignocellulosic biomasses, which is a costly and non-ecofriendly process. Xylose-rich hemicellulosic hydrolysates are the major raw materials for xylitol production through either chemical or biotechnological routes. Economic production of a clean hemicellulosic hydrolysate is one of the major bottlenecks for xylitol production on the commercial scale. Advancements in biotechnology, such as the isolation of novel microorganisms, genetic manipulation of xylose metabolizing strains, and modifications in the fermentation process, can enhance the economic feasibility of xylitol production on the large scale. Furthermore, xylitol production in integrated biorefineries can be even more economic, given the readily available raw materials and the co-use of steam, electricity, and water, among others. Exploring new biotechnology techniques in integrated biorefineries would open new markets and opportunities for sustainable xylitol production to fulfill the market's growing demands for this sugar alcohol. This article is a review of the advancements reported in the whole biotechnological process for xylitol production, and involve pretreatment technologies, hemicellulosic hydrolysate preparation, xylose conversion into xylitol, and product recovery. Special attention is devoted to current metabolic engineering strategies to improve this bioprocess, as well as to the importance of xylitol production processes in biorefineries.


Asunto(s)
Biotecnología/métodos , Xilitol/biosíntesis , Fermentación , Ingeniería Metabólica , Polisacáridos/metabolismo , Xilosa/metabolismo
13.
Xenotransplantation ; 26(3): e12507, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30963648

RESUMEN

INTRODUCTION: Recent immunological and transgenic advances are a promising alternative using limited materials of human origin for transplantation. However, it is essential to achieve social acceptance of this therapy. OBJECTIVE: To analyze the attitude of nursing students from Spanish universities toward organ xenotransplantation (XTx) and to determine the factors affecting their attitude. MATERIALS AND METHODS: Type of study: A sociological, multicentre, and observational study. STUDY POPULATION: Nursing students enrolled in Spain (n = 28,000). SAMPLE SIZE: A sample of 10 566 students estimating a proportion of 76% (99% confidence and precision of ±1%), stratified by geographical area and year of study. Instrument of measurement: A validated questionnaire (PCID-XenoTx-RIOS) was handed out to every student in a compulsory session. This survey was self-administered and self-completed voluntarily and anonymously by each student in a period of 5-10 min. STATISTICAL ANALYSIS: descriptive analysis, Student's t test, the chi-square test, and a logistic regression analysis. RESULTS: A completion rate: 84% (n = 8913) was obtained. If the results of XTx were as good as in human donation, 74% (n = 6564) would be in favor and 22% (n = 1946) would have doubts. The following variables affected this attitude: age (P < 0.001); sex (P < 0.001); geographical location (P < 0.001); academic year of study (P < 0.001); attitude toward organ donation (P < 0.001); belief in the possibility of needing a transplant (P < 0.001); discussion of transplantation with one's family (P < 0.001) and friends (P < 0.001); and the opinion of one's partner (P < 0.001). The following variables persisted in the multivariate analysis: being a male (OR = 1.436; P < 0.001); geographical location (OR = 1.937; P < 0.001); an attitude in favor of donation (OR = 1.519; P < 0.001); belief in the possibility of needing a transplant (OR = 1.497; P = 0.036); and having spoken about the issue with family (OR = 1.351; P < 0.001) or friends (OR = 1.240; P = 0.001). CONCLUSIONS: The attitude of nursing students toward organ XTx is favorable and is associated with factors of general knowledge about organ donation and transplantation and social interaction.


Asunto(s)
Actitud , Trasplante de Órganos , Estudiantes de Enfermería/estadística & datos numéricos , Trasplante Heterólogo , Femenino , Xenoinjertos/inmunología , Humanos , Donadores Vivos , Masculino , Trasplante de Órganos/métodos , Estudiantes de Medicina , Obtención de Tejidos y Órganos/métodos
14.
Biotechnol Lett ; 41(12): 1391-1401, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31659577

RESUMEN

OBJECTIVE: To select potential ligands of ALS3 for drug development with anti-adhesion and/or anti-biofilm activities. METHODOLOGY: ALS3 model was considered stable by DM. The main features of protein flexibility were represented by two conformers which were used in the virtual screening. Twenty-four small molecules were selected for in vitro assays. Five of them presented the best biological activity with ability to inhibit the adhesion and C. albicans biofilm formation on abiotic surface. RESULTS: To select potential ligands of ALS3 for drug development with anti-adhesion and/or anti-biofilm activities. CONCLUSION: In silico tools application was able to select promising compounds with anti-adhesion activity, opening a new perspective of medical device treatment.


Asunto(s)
Antifúngicos/aislamiento & purificación , Candida albicans/efectos de los fármacos , Candida albicans/fisiología , Adhesión Celular/efectos de los fármacos , Descubrimiento de Drogas/métodos , Proteínas Fúngicas/antagonistas & inhibidores , Simulación del Acoplamiento Molecular/métodos , Antifúngicos/química , Biopelículas/efectos de los fármacos , Proteínas Fúngicas/química , Unión Proteica , Conformación Proteica
15.
Artículo en Inglés | MEDLINE | ID: mdl-28559266

RESUMEN

Fungal Candida species are commensals present in the mammalian skin and mucous membranes. Candida spp. are capable of breaching the epithelial barrier of immunocompromised patients with neutrophil and cell-mediated immune dysfunctions and can also disseminate to multiple organs through the bloodstream. Here we examined the action of innate defense regulator 1018 (IDR-1018), a 12-amino-acid-residue peptide derived from bovine bactenecin (Bac2A): IDR-1018 showed weak antifungal and antibiofilm activity against a Candida albicans laboratory strain (ATCC 10231) and a clinical isolate (CI) (MICs of 32 and 64 µg · ml-1, respectively), while 8-fold lower concentrations led to dissolution of the fungal cells from preformed biofilms. IDR-1018 at 128 µg · ml-1 was not hemolytic when tested against murine red blood cells and also has not shown a cytotoxic effect on murine monocyte RAW 264.7 and primary murine macrophage cells at the tested concentrations. IDR-1018 modulated the cytokine profile during challenge of murine bone marrow-derived macrophages with heat-killed C. albicans (HKCA) antigens by increasing monocyte chemoattractant protein 1 (MCP-1) and interleukin-10 (IL-10) levels, while suppressing tumor necrosis factor alpha (TNF-α), IL-1ß, IL-6, and IL-12 levels. Mice treated with IDR-1018 at 10 mg · kg-1 of body weight had an increased survival rate in the candidemia model compared with phosphate-buffered saline (PBS)-treated mice, together with a diminished kidney fungal burden. Thus, IDR-1018 was able to protect against murine experimental candidemia and has the potential as an adjunctive therapy.


Asunto(s)
Antifúngicos/uso terapéutico , Péptidos Catiónicos Antimicrobianos/uso terapéutico , Biopelículas/efectos de los fármacos , Candida albicans/efectos de los fármacos , Candidemia/tratamiento farmacológico , Candidemia/prevención & control , Factores Inmunológicos/uso terapéutico , Animales , Candida albicans/inmunología , Candida albicans/aislamiento & purificación , Línea Celular , Quimiocina CCL2/inmunología , Modelos Animales de Enfermedad , Interleucina-10/inmunología , Subunidad p35 de la Interleucina-12/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Macrófagos/efectos de los fármacos , Ratones , Pruebas de Sensibilidad Microbiana , Células RAW 264.7 , Factor de Necrosis Tumoral alfa/metabolismo
16.
Med Mycol ; 54(2): 177-88, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26384386

RESUMEN

Paracoccidioidomycosis (PCM) is a systemic mycosis, widespread in Latin America. PCM is a granulomatous disease characterized by a polymorphism of lesions depending on the pathogen's virulence, the immune status of the host and its genetic susceptibility. The thermodimorphic fungus Paracoccidioides brasiliensis was considered the only etiologic agent of PCM, yet recent works have shown significant genetic diversity among different strains of P. brasiliensis. Therefore, it has been proposed for a new species within the Paracoccidioides genus, named Paracoccidioides lutzii. To better understand the fungus-host interactions elicited by strains Pb01 and Pb18 as key representatives of P. lutzii and P. brasiliensis, respectively, we carried out studies to investigate differences in morphology, induced immune response, virulence and pathology between these two Paracoccidioides species. Our results demonstrate distinct patterns of host-parasite interaction and pathology caused by Pb18 and Pb01. These results open up new fronts for NEW: clinical studies, which may result in significant consequences for the diagnosis and treatment of PCM. Considering that our results cannot be extended to all strains of both species, more studies about the virulence among Paracoccioides must be explored in the future.


Asunto(s)
Interacciones Huésped-Patógeno , Paracoccidioides/citología , Paracoccidioides/inmunología , Paracoccidioidomicosis/microbiología , Paracoccidioidomicosis/patología , Animales , Modelos Animales de Enfermedad , Masculino , Ratones Endogámicos BALB C , Paracoccidioides/patogenicidad , Paracoccidioidomicosis/inmunología , Virulencia
18.
Appl Microbiol Biotechnol ; 100(9): 4015-25, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26695160

RESUMEN

The thioredoxin system plays a critical role in maintaining the cytoplasm redox state, participating in functions that are important to the cellular viability of fungi. Although functional and structural information on targets in human pathogenic fungi has been scarcely described in the literature, such studies are essential for in silico drug design and biotechnological applications. Therefore, the aims of the present study were to produce recombinant proteins of the thioredoxin system from Candida albicans and evaluate their possible use as prophylactic or alternative therapies against the most important pathogenic fungus associated with nosocomial infections. We focused on biochemical and structural analyses of recombinant thioredoxin reductase from C. albicans with His-tag (CaTrxR-His) for further biotechnology applications. Heterologous CaTrxR-His was efficiently expressed in the soluble fraction of the Escherichia coli lysate. CaTrxR-His was obtained with a high level of purity and presented specific enzymatic activity. Conformational changes of the protein were observed at different pHs and temperatures, with higher thermal stability at pH 8.0. The CaTrxR-His vaccine was shown to effectively induce high levels of CaTrxR-specific immunoglobulin G antibodies in Balb/c mice and reduce the renal fungal burden of experimental disseminated candidiasis in mice. These data may greatly impact future development strategies for vaccine and drug designs against C. albicans infection.


Asunto(s)
Candida albicans/enzimología , Reductasa de Tiorredoxina-Disulfuro/inmunología , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Animales , Anticuerpos Antifúngicos/sangre , Antígenos Fúngicos/genética , Antígenos Fúngicos/metabolismo , Candida albicans/genética , Estabilidad de Enzimas , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Concentración de Iones de Hidrógeno , Inmunoglobulina G/sangre , Ratones Endogámicos BALB C , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo , Temperatura , Reductasa de Tiorredoxina-Disulfuro/genética
19.
Eukaryot Cell ; 14(2): 158-69, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25480940

RESUMEN

Sporotrichosis is one of the most frequent subcutaneous fungal infections in humans and animals caused by members of the plant-associated, dimorphic genus Sporothrix. Three of the four medically important Sporothrix species found in Brazil have been considered asexual as no sexual stage has ever been reported in Sporothrix schenckii, Sporothrix brasiliensis, or Sporothrix globosa. We have identified the mating type (MAT) loci in the S. schenckii (strain 1099-18/ATCC MYA-4821) and S. brasiliensis (strain 5110/ATCC MYA-4823) genomes by using comparative genomic approaches to determine the mating type ratio in these pathogen populations. Our analysis revealed the presence of a MAT1-1 locus in S. schenckii while a MAT1-2 locus was found in S. brasiliensis representing genomic synteny to other Sordariomycetes. Furthermore, the components of the mitogen-activated protein kinase (MAPK)-pheromone pathway, pheromone processing enzymes, and meiotic regulators have also been identified in the two pathogens, suggesting the potential for sexual reproduction. The ratio of MAT1-1 to MAT1-2 was not significantly different from 1:1 for all three Sporothrix species, but the population of S. brasiliensis in the outbreaks originated from a single mating type. We also explored the population genetic structure of these pathogens using sequence data of two loci to improve our knowledge of the pattern of geographic distribution, genetic variation, and virulence phenotypes. Population genetics data showed significant population differentiation and clonality with a low level of haplotype diversity in S. brasiliensis isolates from different regions of sporotrichosis outbreaks in Brazil. In contrast, S. schenckii isolates demonstrated a high degree of genetic variability without significant geographic differentiation, indicating the presence of recombination. This study demonstrated that two species causing the same disease have contrasting reproductive strategies and genetic variability patterns.


Asunto(s)
Genes del Tipo Sexual de los Hongos/genética , Reproducción Asexuada , Sporothrix/genética , Esporotricosis/transmisión , Animales , Brasil , Gatos , Brotes de Enfermedades , Humanos , Sistema de Señalización de MAP Quinasas , Polimorfismo Genético , Sporothrix/patogenicidad , Sporothrix/fisiología , Esporotricosis/veterinaria , Virulencia/genética
20.
BMC Genomics ; 16: 376, 2015 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-25962381

RESUMEN

BACKGROUND: Species from the Paracoccidioides complex are thermally dimorphic fungi and the causative agents of paracoccidioidomycosis, a deep fungal infection that is the most prevalent systemic mycosis in Latin America and represents the most important cause of death in immunocompetent individuals with systemic mycosis in Brazil. We previously described the identification of eight new families of DNA transposons in Paracoccidioides genomes. In this work, we aimed to identify potentially active retrotransposons in Paracoccidioides genomes. RESULTS: We identified five different retrotransposon families (four LTR-like and one LINE-like element) in the genomes of three Paracoccidioides isolates. Retrotransposons were present in all of the genomes analyzed. P. brasiliensis and P. lutzii species harbored the same retrotransposon lineages but differed in their copy numbers. In the Pb01, Pb03 and Pb18 genomes, the number of LTR retrotransposons was higher than the number of LINE-like elements, and the LINE-like element RtPc5 was transcribed in Paracoccidioides lutzii (Pb01) but could not be detected in P. brasiliensis (Pb03 and Pb18) by semi-quantitative RT-PCR. CONCLUSION: Five new potentially active retrotransposons have been identified in the genomic assemblies of the Paracoccidioides species complex using a combined computational and experimental approach. The distribution across the two known species, P. brasiliensis and P. lutzii, and phylogenetics analysis indicate that these elements could have been acquired before speciation occurred. The presence of active retrotransposons in the genome may have implications regarding the evolution and genetic diversification of the Paracoccidioides genus.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Genoma Fúngico/genética , Paracoccidioides/genética , Retroelementos/genética , Análisis por Conglomerados , Etiquetas de Secuencia Expresada/metabolismo , Genómica , Anotación de Secuencia Molecular , Paracoccidioides/clasificación , Filogenia , Secuencias Repetidas Terminales/genética , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA