Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(23): e2319499121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38814867

RESUMEN

Plants and animals detect biomolecules termed microbe-associated molecular patterns (MAMPs) and induce immunity. Agricultural production is severely impacted by pathogens which can be controlled by transferring immune receptors. However, most studies use a single MAMP epitope and the impact of diverse multicopy MAMPs on immune induction is unknown. Here, we characterized the epitope landscape from five proteinaceous MAMPs across 4,228 plant-associated bacterial genomes. Despite the diversity sampled, natural variation was constrained and experimentally testable. Immune perception in both Arabidopsis and tomato depended on both epitope sequence and copy number variation. For example, Elongation Factor Tu is predominantly single copy, and 92% of its epitopes are immunogenic. Conversely, 99.9% of bacterial genomes contain multiple cold shock proteins, and 46% carry a nonimmunogenic form. We uncovered a mechanism for immune evasion, intrabacterial antagonism, where a nonimmunogenic cold shock protein blocks perception of immunogenic forms encoded in the same genome. These data will lay the foundation for immune receptor deployment and engineering based on natural variation.


Asunto(s)
Arabidopsis , Epítopos , Solanum lycopersicum , Epítopos/inmunología , Solanum lycopersicum/inmunología , Solanum lycopersicum/genética , Solanum lycopersicum/microbiología , Arabidopsis/inmunología , Arabidopsis/genética , Genoma Bacteriano , Moléculas de Patrón Molecular Asociado a Patógenos/inmunología , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Inmunidad de la Planta/genética , Inmunidad de la Planta/inmunología , Factor Tu de Elongación Peptídica/genética , Factor Tu de Elongación Peptídica/inmunología , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/genética , Bacterias/inmunología , Bacterias/genética , Proteínas y Péptidos de Choque por Frío/genética , Proteínas y Péptidos de Choque por Frío/inmunología , Proteínas y Péptidos de Choque por Frío/metabolismo
2.
J Am Chem Soc ; 145(29): 16081-16089, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37437195

RESUMEN

Magic spot nucleotides (p)ppGpp are important signaling molecules in bacteria and plants. In the latter, RelA-SpoT homologue (RSH) enzymes are responsible for (p)ppGpp turnover. Profiling of (p)ppGpp is more difficult in plants than in bacteria due to lower concentrations and more severe matrix effects. Here, we report that capillary electrophoresis mass spectrometry (CE-MS) can be deployed to study (p)ppGpp abundance and identity in Arabidopsis thaliana. This goal is achieved by combining a titanium dioxide extraction protocol and pre-spiking with chemically synthesized stable isotope-labeled internal reference compounds. The high sensitivity and separation efficiency of CE-MS enables monitoring of changes in (p)ppGpp levels in A. thaliana upon infection with the pathogen Pseudomonas syringae pv. tomato (PstDC3000). We observed a significant increase of ppGpp post infection that is also stimulated by the flagellin peptide flg22 only. This increase depends on functional flg22 receptor FLS2 and its interacting kinase BAK1 indicating that pathogen-associated molecular pattern (PAMP) receptor-mediated signaling controls ppGpp levels. Transcript analyses showed an upregulation of RSH2 upon flg22 treatment and both RSH2 and RSH3 after PstDC3000 infection. Arabidopsis mutants deficient in RSH2 and RSH3 activity display no ppGpp accumulation upon infection and flg22 treatment, supporting the involvement of these synthases in PAMP-triggered innate immune responses to pathogens within the chloroplast.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Guanosina Pentafosfato , Proteínas de Arabidopsis/metabolismo , Transducción de Señal , Plantas , Cloroplastos/metabolismo
3.
New Phytol ; 237(6): 2493-2504, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36564969

RESUMEN

Agrobacterium tumefaciens microbe-associated molecular pattern elongation factor Tu (EF-Tu) is perceived by orthologs of the Arabidopsis immune receptor EFR activating pattern-triggered immunity (PTI) that causes reduced T-DNA-mediated transient expression. We altered EF-Tu in A. tumefaciens to reduce PTI and improved transformation efficiency. A robust computational pipeline was established to detect EF-Tu protein variation in a large set of plant bacterial species and identified EF-Tu variants from bacterial pathogen Pseudomonas syringae pv. tomato DC3000 that allow the pathogen to escape EFR perception. Agrobacterium tumefaciens strains were engineered to substitute EF-Tu with DC3000 variants and examined their transformation efficiency in plants. Elongation factor Tu variants with rarely occurred amino acid residues were identified within DC3000 EF-Tu that mitigates recognition by EFR. Agrobacterium tumefaciens strains were engineered by expressing DC3000 EF-Tu instead of native agrobacterial EF-Tu and resulted in decreased plant immunity detection. These engineered A. tumefaciens strains displayed an increased efficiency in transient expression in both Arabidopsis thaliana and Camelina sativa. The results support the potential application of these strains as improved vehicles to introduce transgenic alleles into members of the Brassicaceae family.


Asunto(s)
Agrobacterium tumefaciens , Proteínas de Arabidopsis , Arabidopsis , Técnicas de Transferencia de Gen , Factor Tu de Elongación Peptídica , Inmunidad de la Planta , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Factor Tu de Elongación Peptídica/genética , Factor Tu de Elongación Peptídica/metabolismo , Inmunidad de la Planta/genética , Pseudomonas syringae/genética
4.
Plant Cell Environ ; 46(8): 2558-2574, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37267124

RESUMEN

Sweet potato (Ipomoea batatas) is an important tuber crop, but also target of numerous insect pests. Intriguingly, the abundant storage protein in tubers, sporamin, has intrinsic trypsin protease inhibitory activity. In leaves, sporamin is induced by wounding or a volatile homoterpene and enhances insect resistance. While the signalling pathway leading to sporamin synthesis is partially established, the initial event, perception of a stress-related signal is still unknown. Here, we identified an IbLRR-RK1 that is induced upon wounding and herbivory, and related to peptide-elicitor receptors (PEPRs) from tomato and Arabidopsis. We also identified a gene encoding a precursor protein comprising a peptide ligand (IbPep1) for IbLRR-RK1. IbPep1 represents a distinct signal in sweet potato, which might work in a complementary and/or parallel pathway to the previously described hydroxyproline-rich systemin (HypSys) peptides to strengthen insect resistance. Notably, an interfamily compatibility in the Pep/PEPR system from Convolvulaceae and Solanaceae was identified.


Asunto(s)
Ipomoea batatas , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Ligandos , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Péptidos/metabolismo
5.
Mol Cell Proteomics ; 19(8): 1248-1262, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32404488

RESUMEN

Peptides derived from non-functional precursors play important roles in various developmental processes, but also in (a)biotic stress signaling. Our (phospho)proteome-wide analyses of C-TERMINALLY ENCODED PEPTIDE 5 (CEP5)-mediated changes revealed an impact on abiotic stress-related processes. Drought has a dramatic impact on plant growth, development and reproduction, and the plant hormone auxin plays a role in drought responses. Our genetic, physiological, biochemical, and pharmacological results demonstrated that CEP5-mediated signaling is relevant for osmotic and drought stress tolerance in Arabidopsis, and that CEP5 specifically counteracts auxin effects. Specifically, we found that CEP5 signaling stabilizes AUX/IAA transcriptional repressors, suggesting the existence of a novel peptide-dependent control mechanism that tunes auxin signaling. These observations align with the recently described role of AUX/IAAs in stress tolerance and provide a novel role for CEP5 in osmotic and drought stress tolerance.


Asunto(s)
Adaptación Fisiológica , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiología , Ácidos Indolacéticos/metabolismo , Péptidos/metabolismo , Proteómica , Estrés Fisiológico , Adaptación Fisiológica/genética , Arabidopsis/genética , Transporte Biológico/genética , Sequías , Regulación de la Expresión Génica de las Plantas , Ósmosis , Fosfoproteínas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteoma/metabolismo , Plantones/crecimiento & desarrollo , Estrés Fisiológico/genética , Transcripción Genética
6.
Plant Cell ; 26(5): 1838-1847, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24808051

RESUMEN

Peptide signals have emerged as an important class of regulators in cell-to-cell communication in plants. Several families of small, secreted proteins with a conserved C-terminal Pro-rich motif have been identified as functional peptide signals in Arabidopsis thaliana. These proteins are presumed to be trimmed proteolytically and undergo posttranslational modifications, such as hydroxylation of Pro residues and glycosylation, to form mature, bioactive signals. Identification and matching of such ligands with their respective receptors remains a major challenge since the genes encoding them often show redundancy and low expression restricted to a few cells or particular developmental stages. To overcome these difficulties, we propose the use of ectopic expression of receptor genes in suitable plant cells like Nicotiana benthamiana for testing ligand candidates in receptor output assays and in binding studies. As an example, we used the IDA peptide HAE/HSL2 receptor signaling system known to regulate floral organ abscission. We demonstrate that the oxidative burst response can be employed as readout for receptor activation by synthetic peptides and that a new, highly sensitive, nonradioactive labeling approach can be used to reveal a direct correlation between peptide activity and receptor affinity. We suggest that these approaches will be of broad value for the field of ligand-receptor studies in plants.

7.
Mol Plant Microbe Interact ; 29(5): 374-84, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26926999

RESUMEN

Gram-negative bacteria continuously pinch off portions of their outer membrane, releasing membrane vesicles. These outer membrane vesicles (OMVs) are involved in multiple processes including cell-to-cell communication, biofilm formation, stress tolerance, horizontal gene transfer, and virulence. OMVs are also known modulators of the mammalian immune response. Despite the well-documented role of OMVs in mammalian-bacterial communication, their interaction with plants is not well studied. To examine whether OMVs of plant pathogens modulate the plant immune response, we purified OMVs from four different plant pathogens and used them to treat Arabidopsis thaliana. OMVs rapidly induced a reactive oxygen species burst, medium alkalinization, and defense gene expression in A. thaliana leaf discs, cell cultures, and seedlings, respectively. Western blot analysis revealed that EF-Tu is present in OMVs and that it serves as an elicitor of the plant immune response in this form. Our results further show that the immune coreceptors BAK1 and SOBIR1 mediate OMV perception and response. Taken together, our results demonstrate that plants can detect and respond to OMV-associated molecules by activation of their immune system, revealing a new facet of plant-bacterial interactions.


Asunto(s)
Arabidopsis/inmunología , Bacterias/metabolismo , Membrana Celular/fisiología , Enfermedades de las Plantas/inmunología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Bacterias/clasificación , Regulación de la Expresión Génica de las Plantas/inmunología
8.
Plant Physiol ; 168(3): 1106-21, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25944825

RESUMEN

The membrane-bound Brassinosteroid insensitive1-associated receptor kinase1 (BAK1) is a common coreceptor in plants and regulates distinct cellular programs ranging from growth and development to defense against pathogens. BAK1 functions through binding to ligand-stimulated transmembrane receptors and activating their kinase domains via transphosphorylation. In the absence of microbes, BAK1 activity may be suppressed by different mechanisms, like interaction with the regulatory BIR (for BAK1-interacting receptor-like kinase) proteins. Here, we demonstrated that BAK1 overexpression in Arabidopsis (Arabidopsis thaliana) could cause detrimental effects on plant development, including growth arrest, leaf necrosis, and reduced seed production. Further analysis using an inducible expression system showed that BAK1 accumulation quickly stimulated immune responses, even under axenic conditions, and led to increased resistance to pathogenic Pseudomonas syringae pv tomato DC3000. Intriguingly, our study also revealed that the plasma membrane-associated BAK1 ectodomain was sufficient to induce autoimmunity, indicating a novel mode of action for BAK1 in immunity control. We postulate that an excess of BAK1 or its ectodomain could trigger immune receptor activation in the absence of microbes through unbalancing regulatory interactions, including those with BIRs. Consistently, mutation of suppressor of BIR1-1, which encodes an emerging positive regulator of transmembrane receptors in plants, suppressed the effects of BAK1 overexpression. In conclusion, our findings unravel a new role for the BAK1 ectodomain in the tight regulation of Arabidopsis immune receptors necessary to avoid inappropriate activation of immunity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Autoinmunidad , Inmunidad de la Planta , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/microbiología , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Autoinmunidad/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Resistencia a la Enfermedad/efectos de los fármacos , Flagelina/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes Dominantes , Genes de Plantas , Células del Mesófilo/citología , Células del Mesófilo/efectos de los fármacos , Células del Mesófilo/metabolismo , Mutación/genética , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Fenotipo , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/efectos de los fármacos , Plantas Modificadas Genéticamente , Proteínas Quinasas/genética , Estructura Terciaria de Proteína , Pseudomonas syringae/crecimiento & desarrollo , Pseudomonas syringae/fisiología , Plantones/citología , Plantones/efectos de los fármacos , Plantones/metabolismo
9.
Plant Cell ; 25(6): 2330-40, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23898033

RESUMEN

As part of their immune system, plants have pattern recognition receptors (PRRs) that can detect a broad range of microbe-associated molecular patterns (MAMPs). Here, we identified a PRR of Arabidopsis thaliana with specificity for the bacterial MAMP eMax from xanthomonads. Response to eMax seems to be restricted to the Brassicaceae family and also varied among different accessions of Arabidopsis. In crosses between sensitive accessions and the insensitive accession Shakhdara, eMax perception mapped to receptor-like protein1 (RLP1). Functional complementation of rlp1 mutants required gene constructs that code for a longer version of RLP1 that we termed ReMAX (for receptor of eMax). ReMAX/RLP1 is a typical RLP with structural similarity to the tomato (Solanum lycopersicum) RLP Eix2, which detects fungal xylanase as a MAMP. Attempts to demonstrate receptor function by interfamily transfer of ReMAX to Nicotiana benthamiana were successful after using hybrid receptors with the C-terminal part of ReMAX replaced by that of Eix2. These results show that ReMAX determines specificity for eMax. They also demonstrate hybrid receptor technology as a promising tool to overcome problems that impede interfamily transfer of PRRs to enhance pathogen detection in crop plants.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas Bacterianas/genética , Proteínas Portadoras/genética , Xanthomonas/genética , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Arabidopsis/microbiología , Proteínas de Arabidopsis/metabolismo , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Proteínas Portadoras/metabolismo , Interacciones Huésped-Patógeno/genética , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiología , Modelos Genéticos , Datos de Secuencia Molecular , Mutación , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Protoplastos/metabolismo , Homología de Secuencia de Aminoácido , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/microbiología , Xanthomonas/metabolismo , Xanthomonas/fisiología
10.
Plant Cell ; 24(5): 2213-24, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22634763

RESUMEN

The flagellin receptor of Arabidopsis thaliana, At-FLAGELLIN SENSING2 (FLS2), has become a model for mechanistic and functional studies on plant immune receptors. Here, we started out with a comparison of At-FLS2 and the orthologous tomato (Solanum lycopersicum) receptor Sl-FLS2. Both receptors specifically responded to picomolar concentrations of the genuine flg22 ligand but proved insensitive to >10(6)-fold higher concentrations of CLV3 peptides that have recently been reported as a second type of ligand for At-FLS2. At-FLS2 and Sl-FLS2 exhibit species-specific differences in the recognition of shortened or sequence-modified flg22 ligands. To map the sites responsible for these species-specific traits on the FLS2 receptors, we performed domain swaps, substituting subsets of the 28 leucine-rich repeats (LRRs) in At-FLS2 with the corresponding LRRs from Sl-FLS2. We found that the LRRs 7 to 10 of Sl-FLS2 determine the high affinity of Sl-FLS2 for the core part RINSAKDD of flg22. In addition, we discovered importance of the LRRs 19 to 24 for the responsiveness to C-terminally modified flagellin peptides. These results indicate that ligand perception in FLS2 is a complex molecular process that involves LRRs from both the outermost and innermost LRRs of the FLS2 ectodomain.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Flagelina/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Quinasas/metabolismo , Solanum lycopersicum/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Flagelina/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Proteínas Quinasas/genética
11.
Plant Cell ; 24(8): 3193-7, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22923674

RESUMEN

The pattern recognition receptor FLAGELLIN SENSING2 (FLS2) renders plant cells responsive to subnanomolar concentrations of flg22, the active epitope of bacterial flagellin. We recently observed that a preparation of the peptide IDL1, a signal known to regulate abscission processes via the receptor kinases HAESA and HAESA-like2, apparently triggered Arabidopsis thaliana cells in an FLS2-dependent manner. However, closer investigation revealed that this activity was due to contamination by a flg22-type peptide, and newly synthesized IDL1 peptide was completely inactive in FLS2 signaling. This raised alert over contamination events occurring in the process of synthesis or handling of peptides. Two recent reports have suggested that FLS2 has further specificities for structurally unrelated peptides derived from CLV3 and from Ax21. We thus scrutinized these peptides for activity in Arabidopsis cells as well. While responding to <1 nM flg22, Arabidopsis cells proved blind even to 100 µM concentrations of CLV3p and axY(s)22. Our results confirm the exquisite sensitivity and selectivity of FLS2 for flg22. They also show that inadvertent contaminations with flg22-type peptides do occur and can be detected even in trace amounts by FLS2.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/química , Flagelina/química , Péptidos/análisis , Proteínas Quinasas/química , Bacterias/química , Ligandos , Péptidos/síntesis química , Péptidos/química , Unión Proteica , Protoplastos/química , Transducción de Señal , Especificidad por Sustrato
12.
Plant Cell ; 24(6): 2262-78, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22693282

RESUMEN

Global climate change and a growing population require tackling the reduction in arable land and improving biomass production and seed yield per area under varying conditions. One of these conditions is suboptimal water availability. Here, we review some of the classical approaches to dealing with plant response to drought stress and we evaluate how research on RECEPTOR-LIKE KINASES (RLKs) can contribute to improving plant performance under drought stress. RLKs are considered as key regulators of plant architecture and growth behavior, but they also function in defense and stress responses. The available literature and analyses of available transcript profiling data indeed suggest that RLKs can play an important role in optimizing plant responses to drought stress. In addition, RLK pathways are ideal targets for nontransgenic approaches, such as synthetic molecules, providing a novel strategy to manipulate their activity and supporting translational studies from model species, such as Arabidopsis thaliana, to economically useful crops.


Asunto(s)
Sequías , Fenómenos Fisiológicos de las Plantas , Proteínas Quinasas/fisiología , Proyectos de Investigación , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/química , Reguladores del Crecimiento de las Plantas/metabolismo , Biosíntesis de Proteínas , Estrés Fisiológico
13.
New Phytol ; 201(2): 585-598, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24124900

RESUMEN

We characterized the molecular function of the Pseudomonas syringae pv. tomato DC3000 (Pto) effector HopQ1. In silico studies suggest that HopQ1 might possess nucleoside hydrolase activity based on the presence of a characteristic aspartate motif. Transgenic Arabidopsis lines expressing HopQ1 or HopQ1 aspartate mutant variants were characterized with respect to flagellin triggered immunity, phenotype and changes in phytohormone content by high-performance liquid chromatography-MS (HPLC-MS). We found that HopQ1, but not its aspartate mutants, suppressed all tested immunity marker assays. Suppression of immunity was the result of a lack of the flagellin receptor FLS2, whose gene expression was abolished by HopQ1 in a promoter-dependent manner. Furthermore, HopQ1 induced cytokinin signaling in Arabidopsis and the elevation in cytokinin signaling appears to be responsible for the attenuation of FLS2 expression. We conclude that HopQ1 can activate cytokinin signaling and that moderate activation of cytokinin signaling leads to suppression of FLS2 accumulation and thus defense signaling.


Asunto(s)
Arabidopsis/inmunología , Proteínas Bacterianas/fisiología , Citocininas/metabolismo , Resistencia a la Enfermedad , Pseudomonas syringae/fisiología , Arabidopsis/efectos de los fármacos , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Proteínas Bacterianas/genética , Cromatografía Líquida de Alta Presión , Citocininas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Proteínas Quinasas/metabolismo , Pseudomonas syringae/genética , Transducción de Señal
14.
Plant Physiol ; 163(4): 1504-9, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24130196

RESUMEN

Receptor kinases sense extracellular signals and trigger intracellular signaling and physiological responses. However, how does signal binding to the extracellular domain activate the cytoplasmic kinase domain? Activation of the plant immunoreceptor Flagellin sensing2 (FLS2) by its bacterial ligand flagellin or the peptide-epitope flg22 coincides with rapid complex formation with a second receptor kinase termed brassinosteroid receptor1 associated kinase1 (BAK1). Here, we show that the receptor pair of FLS2 and BAK1 is also functional when the roles of the complex partners are reversed by swapping their cytosolic domains. This reciprocal constellation prevents interference by redundant partners that can partially substitute for BAK1 and demonstrates that formation of the heteromeric complex is the molecular switch for transmembrane signaling. A similar approach with swaps between the Elongation factor-Tu receptor and BAK1 also resulted in a functional receptor/coreceptor pair, suggesting that a "two-hybrid-receptor assay" is of more general use for studying heteromeric receptor complexes.


Asunto(s)
Plantas/metabolismo , Multimerización de Proteína , Receptores Inmunológicos/metabolismo , Técnicas del Sistema de Dos Híbridos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Flagelina/metabolismo , Ligandos , Factor Tu de Elongación Peptídica/metabolismo , Plantas/inmunología , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Terciaria de Proteína , Receptores Inmunológicos/inmunología , Proteínas Recombinantes/metabolismo , Transducción de Señal
15.
bioRxiv ; 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37790530

RESUMEN

Plants and animals detect biomolecules termed Microbe-Associated Molecular Patterns (MAMPs) and induce immunity. Agricultural production is severely impacted by pathogens which can be controlled by transferring immune receptors. However, most studies use a single MAMP epitope and the impact of diverse multi-copy MAMPs on immune induction is unknown. Here we characterized the epitope landscape from five proteinaceous MAMPs across 4,228 plant-associated bacterial genomes. Despite the diversity sampled, natural variation was constrained and experimentally testable. Immune perception in both Arabidopsis and tomato depended on both epitope sequence and copy number variation. For example, Elongation Factor Tu is predominantly single copy and 92% of its epitopes are immunogenic. Conversely, 99.9% of bacterial genomes contain multiple Cold Shock Proteins and 46% carry a non-immunogenic form. We uncovered a new mechanism for immune evasion, intrabacterial antagonism, where a non-immunogenic Cold Shock Protein blocks perception of immunogenic forms encoded in the same genome. These data will lay the foundation for immune receptor deployment and engineering based on natural variation.

16.
New Phytol ; 200(3): 847-860, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23865782

RESUMEN

The bacterial flagellin (FliC) epitopes flg22 and flgII-28 are microbe-associated molecular patterns (MAMPs). Although flg22 is recognized by many plant species via the pattern recognition receptor FLS2, neither the flgII-28 receptor nor the extent of flgII-28 recognition by different plant families is known. Here, we tested the significance of flgII-28 as a MAMP and the importance of allelic diversity in flg22 and flgII-28 in plant-pathogen interactions using purified peptides and a Pseudomonas syringae ∆fliC mutant complemented with different fliC alleles. The plant genotype and allelic diversity in flg22 and flgII-28 were found to significantly affect the plant immune response, but not bacterial motility. The recognition of flgII-28 is restricted to a number of solanaceous species. Although the flgII-28 peptide does not trigger any immune response in Arabidopsis, mutations in both flg22 and flgII-28 have FLS2-dependent effects on virulence. However, the expression of a tomato allele of FLS2 does not confer to Nicotiana benthamiana the ability to detect flgII-28, and tomato plants silenced for FLS2 are not altered in flgII-28 recognition. Therefore, MAMP diversification is an effective pathogen virulence strategy, and flgII-28 appears to be perceived by an as yet unidentified receptor in the Solanaceae, although it has an FLS2-dependent virulence effect in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/microbiología , Flagelina/genética , Genotipo , Inmunidad de la Planta/genética , Proteínas Quinasas/metabolismo , Pseudomonas syringae/patogenicidad , Solanaceae/microbiología , Alelos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno/genética , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiología , Mutación , Enfermedades de las Plantas/genética , Proteínas Quinasas/genética , Pseudomonas syringae/genética , Pseudomonas syringae/fisiología , Solanaceae/genética , Solanaceae/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/microbiología
17.
Nature ; 448(7152): 497-500, 2007 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-17625569

RESUMEN

Plants sense potential microbial invaders by using pattern-recognition receptors to recognize pathogen-associated molecular patterns (PAMPs). In Arabidopsis thaliana, the leucine-rich repeat receptor kinases flagellin-sensitive 2 (FLS2) (ref. 2) and elongation factor Tu receptor (EFR) (ref. 3) act as pattern-recognition receptors for the bacterial PAMPs flagellin and elongation factor Tu (EF-Tu) (ref. 5) and contribute to resistance against bacterial pathogens. Little is known about the molecular mechanisms that link receptor activation to intracellular signal transduction. Here we show that BAK1 (BRI1-associated receptor kinase 1), a leucine-rich repeat receptor-like kinase that has been reported to regulate the brassinosteroid receptor BRI1 (refs 6,7), is involved in signalling by FLS2 and EFR. Plants carrying bak1 mutations show normal flagellin binding but abnormal early and late flagellin-triggered responses, indicating that BAK1 acts as a positive regulator in signalling. The bak1-mutant plants also show a reduction in early, but not late, EF-Tu-triggered responses. The decrease in responses to PAMPs is not due to reduced sensitivity to brassinosteroids. We provide evidence that FLS2 and BAK1 form a complex in vivo, in a specific ligand-dependent manner, within the first minutes of stimulation with flagellin. Thus, BAK1 is not only associated with developmental regulation through the plant hormone receptor BRI1 (refs 6,7), but also has a functional role in PRR-dependent signalling, which initiates innate immunity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Arabidopsis/metabolismo , Flagelina/inmunología , Enfermedades de las Plantas/inmunología , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/inmunología , Sitios de Unión , Flagelina/química , Flagelina/metabolismo , Ligandos , Mutación/genética , Factor Tu de Elongación Peptídica/metabolismo , Unión Proteica , Proteínas Quinasas/inmunología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/inmunología
18.
Nat Commun ; 14(1): 3621, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37336953

RESUMEN

The Arabidopsis thaliana Receptor-Like Protein RLP30 contributes to immunity against the fungal pathogen Sclerotinia sclerotiorum. Here we identify the RLP30-ligand as a small cysteine-rich protein (SCP) that occurs in many fungi and oomycetes and is also recognized by the Nicotiana benthamiana RLP RE02. However, RLP30 and RE02 share little sequence similarity and respond to different parts of the native/folded protein. Moreover, some Brassicaceae other than Arabidopsis also respond to a linear SCP peptide instead of the folded protein, suggesting that SCP is an eminent immune target that led to the convergent evolution of distinct immune receptors in plants. Surprisingly, RLP30 shows a second ligand specificity for a SCP-nonhomologous protein secreted by bacterial Pseudomonads. RLP30 expression in N. tabacum results in quantitatively lower susceptibility to bacterial, fungal and oomycete pathogens, thus demonstrating that detection of immunogenic patterns by Arabidopsis RLP30 is involved in defense against pathogens from three microbial kingdoms.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Oomicetos , Arabidopsis/metabolismo , Cisteína/metabolismo , Ligandos , Proteínas/metabolismo , Oomicetos/metabolismo , Bacterias/metabolismo , Receptores de Reconocimiento de Patrones/metabolismo , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas
19.
J Biol Chem ; 285(25): 19035-42, 2010 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-20410299

RESUMEN

The receptor kinase EFR of Arabidopsis thaliana detects the microbe-associated molecular pattern elf18, a peptide that represents the N terminus of bacterial elongation factor Tu. Here, we tested subdomains of EFR for their importance in receptor function. Transient expression of tagged versions of EFR and EFR lacking its cytoplasmic domain in leaves of Nicotiana benthamiana resulted in functional binding sites for elf18. No binding of ligand was found with the ectodomain lacking the transmembrane domain or with EFR lacking the first 5 of its 21 leucine-rich repeats (LRRs). EFR is structurally related to the receptor kinase flagellin-sensing 2 (FLS2) that detects bacterial flagellin. Chimeric receptors with subdomains of FLS2 substituting for corresponding parts of EFR were tested for functionality in ligand binding and receptor activation assays. Substituting the transmembrane domain and the cytoplasmic domain resulted in a fully functional receptor for elf18. Replacing also the outer juxtamembrane domain with that of FLS2 led to a receptor with full affinity for elf18 but with a lower efficiency in response activation. Extending the substitution to encompass also the last two of the LRRs abolished binding and receptor activation. Substitution of the N terminus by the first six LRRs from FLS2 reduced binding affinity and strongly affected receptor activation. In summary, chimeric receptors allow mapping of subdomains relevant for ligand binding and receptor activation. The results also show that modular assembly of chimeras from different receptors can be used to form functional receptors.


Asunto(s)
Arabidopsis/metabolismo , Flagelina/metabolismo , Regulación Bacteriana de la Expresión Génica , Factor Tu de Elongación Peptídica/metabolismo , Receptores de Reconocimiento de Patrones/metabolismo , Secuencia de Aminoácidos , Arabidopsis/microbiología , Bioquímica/métodos , Regulación de la Expresión Génica de las Plantas , Ligandos , Modelos Biológicos , Datos de Secuencia Molecular , Estrés Oxidativo , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Reproducibilidad de los Resultados
20.
J Biol Chem ; 285(13): 9444-9451, 2010 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-20103591

RESUMEN

In plants leucine-rich repeat receptor kinases (LRR-RKs) located at the plasma membrane play a pivotal role in the perception of extracellular signals. For two of these LRR-RKs, the brassinosteroid receptor BRI1 and the flagellin receptor FLS2, interaction with the LRR receptor-like kinase BAK1 (BRI1-associated receptor kinase 1) was shown to be required for signal transduction. Here we report that FLS2.BAK1 heteromerization occurs almost instantaneously after perception of the ligand, the flagellin-derived peptide flg22. Flg22 can induce formation of a stable FLS2.BAK1 complex in microsomal membrane preparations in vitro, and the kinase inhibitor K-252a does not prevent complex formation. A kinase dead version of BAK1 associates with FLS2 in a flg22-dependent manner but does not restore responsiveness to flg22 in cells of bak1 plants, demonstrating that kinase activity of BAK1 is essential for FLS2 signaling. Furthermore, using in vivo phospholabeling, we are able to detect de novo phosphorylation of both FLS2 and BAK1 within 15 s of stimulation with flg22. Similarly, brassinolide induces BAK1 phosphorylation within seconds. Other triggers of plant defense, such as bacterial EF-Tu and the endogenous AtPep1 likewise induce rapid formation of heterocomplexes consisting of de novo phosphorylated BAK1 and proteins representing the ligand-specific binding receptors EF-Tu receptor and Pep1 receptor 1, respectively. Thus, we propose that several LRR-RKs form tight complexes with BAK1 almost instantaneously after ligand binding and that the subsequent phosphorylation events are key initial steps in signal transduction.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Fosforilación , Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Dimerización , Cinética , Ligandos , Microsomas/metabolismo , Factor Tu de Elongación Peptídica/química , Plantas Modificadas Genéticamente/metabolismo , Estructura Terciaria de Proteína , Transducción de Señal , Transactivadores/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA