Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Circ Res ; 134(2): 189-202, 2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-38152893

RESUMEN

BACKGROUND: Diabetes is a major risk factor for atherosclerotic cardiovascular diseases with a 2-fold higher risk of cardiovascular events in people with diabetes compared with those without. Circulating monocytes are inflammatory effector cells involved in both type 2 diabetes (T2D) and atherogenesis. METHODS: We investigated the relationship between circulating monocytes and cardiovascular risk progression in people with T2D, using phenotypic, transcriptomic, and metabolomic analyses. cardiovascular risk progression was estimated with coronary artery calcium score in a cohort of 672 people with T2D. RESULTS: Coronary artery calcium score was positively correlated with blood monocyte count and frequency of the classical monocyte subtype. Unsupervised k-means clustering based on monocyte subtype profiles revealed 3 main endotypes of people with T2D at varying risk of cardiovascular events. These observations were confirmed in a validation cohort of 279 T2D participants. The predictive association between monocyte count and major adverse cardiovascular events was validated through an independent prospective cohort of 757 patients with T2D. Integration of monocyte transcriptome analyses and plasma metabolomes showed a disruption of mitochondrial pathways (tricarboxylic acid cycle, oxidative phosphorylation pathway) that underlined a proatherogenic phenotype. CONCLUSIONS: In this study, we provide evidence that frequency and monocyte phenotypic profile are closely linked to cardiovascular risk in patients with T2D. The assessment of monocyte frequency and count is a valuable predictive marker for risk of cardiovascular events in patients with T2D. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT04353869.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Humanos , Monocitos/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/diagnóstico , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/epidemiología , Factores de Riesgo , Estudios Prospectivos , Calcio/metabolismo , Fenotipo , Factores de Riesgo de Enfermedad Cardiaca
2.
Mol Cell ; 66(1): 89-101.e8, 2017 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-28366643

RESUMEN

Histone replacement by transition proteins (TPs) and protamines (Prms) constitutes an essential step for the successful production of functional male gametes, yet nothing is known on the underlying functional interplay between histones, TPs, and Prms. Here, by studying spermatogenesis in the absence of a spermatid-specific histone variant, H2A.L.2, we discover a fundamental mechanism involved in the transformation of nucleosomes into nucleoprotamines. H2A.L.2 is synthesized at the same time as TPs and enables their loading onto the nucleosomes. TPs do not displace histones but rather drive the recruitment and processing of Prms, which are themselves responsible for histone eviction. Altogether, the incorporation of H2A.L.2 initiates and orchestrates a series of successive transitional states that ultimately shift to the fully compacted genome of the mature spermatozoa. Hence, the current view of histone-to-nucleoprotamine transition should be revisited and include an additional step with H2A.L.2 assembly prior to the action of TPs and Prms.


Asunto(s)
Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Histonas/metabolismo , Nucleosomas/metabolismo , Protaminas/metabolismo , Espermatogénesis , Espermatozoides/metabolismo , Animales , Células COS , Chlorocebus aethiops , Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Biología Computacional , Bases de Datos Genéticas , Fertilidad , Regulación del Desarrollo de la Expresión Génica , Predisposición Genética a la Enfermedad , Genoma , Histonas/deficiencia , Histonas/genética , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Infertilidad Masculina/patología , Infertilidad Masculina/fisiopatología , Masculino , Ratones de la Cepa 129 , Ratones Noqueados , Nucleosomas/genética , Fenotipo , Espermatogénesis/genética , Espermatozoides/patología , Transfección
3.
Am J Hum Genet ; 108(6): 1040-1052, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-33964207

RESUMEN

SLC37A4 encodes an endoplasmic reticulum (ER)-localized multitransmembrane protein required for transporting glucose-6-phosphate (Glc-6P) into the ER. Once transported into the ER, Glc-6P is subsequently hydrolyzed by tissue-specific phosphatases to glucose and inorganic phosphate during times of glucose depletion. Pathogenic variants in SLC37A4 cause an established recessive disorder known as glycogen storage disorder 1b characterized by liver and kidney dysfunction with neutropenia. We report seven individuals who presented with liver dysfunction multifactorial coagulation deficiency and cardiac issues and were heterozygous for the same variant, c.1267C>T (p.Arg423∗), in SLC37A4; the affected individuals were from four unrelated families. Serum samples from affected individuals showed profound accumulation of both high mannose and hybrid type N-glycans, while N-glycans in fibroblasts and undifferentiated iPSC were normal. Due to the liver-specific nature of this disorder, we generated a CRISPR base-edited hepatoma cell line harboring the c.1267C>T (p.Arg423∗) variant. These cells replicated the secreted abnormalities seen in serum N-glycosylation, and a portion of the mutant protein appears to relocate to a distinct, non-Golgi compartment, possibly ER exit sites. These cells also show a gene dosage-dependent alteration in the Golgi morphology and reduced intraluminal pH that may account for the altered glycosylation. In summary, we identify a recurrent mutation in SLC37A4 that causes a dominantly inherited congenital disorder of glycosylation characterized by coagulopathy and liver dysfunction with abnormal serum N-glycans.


Asunto(s)
Antiportadores/genética , Trastornos Congénitos de Glicosilación/etiología , Retículo Endoplásmico/patología , Hepatopatías/complicaciones , Proteínas de Transporte de Monosacáridos/genética , Mutación , Adulto , Niño , Preescolar , Trastornos Congénitos de Glicosilación/patología , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Genes Dominantes , Glicosilación , Humanos , Lactante , Recién Nacido , Masculino , Linaje
4.
Mass Spectrom Rev ; 42(4): 1300-1331, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34859466

RESUMEN

The combined use of hydrogen/deuterium exchange (HDX) and mass spectrometry (MS), referred to as HDX-MS, is a powerful tool for exploring molecular edifices and has been used for over 60 years. Initially for structural and mechanistic investigation of low-molecular weight organic compounds, then to study protein structure and dynamics, then, the craze to study small molecules by HDX-MS accelerated and has not stopped yet. The purpose of this review is to present its different facets with particular emphasis on recent developments and applications. Reversible H/D exchanges of mobilizable protons as well as stable exchanges of non-labile hydrogen are considered whether they are taking place in solution or in the gas phase, or enzymatically in a biological media. Some fundamental principles are restated, especially for gas-phase processes, and an overview of recent applications, ranging from identification to quantification through the study of metabolic pathways, is given.


Asunto(s)
Medición de Intercambio de Deuterio , Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio , Deuterio , Medición de Intercambio de Deuterio/métodos , Espectrometría de Masas/métodos , Hidrógeno/química
5.
Allergy ; 79(2): 471-484, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38010857

RESUMEN

BACKGROUND: Food allergy (FA) is an inappropriate immunological response to food proteins resulting from an impaired induction of oral tolerance. Various early environmental factors can affect the establishment of intestinal homeostasis, predisposing to FA in early life. In this context, we aimed to assess the effect of chronic perinatal exposure to food-grade titanium dioxide (fg-TiO2 ), a common food additive. METHODS: Dams were fed a control versus fg-TiO2 -enriched diet from preconception to weaning, and their progeny received the same diet at weaning. A comprehensive analysis of baseline intestinal and systemic homeostasis was performed in offspring 1 week after weaning by assessing gut barrier maturation and microbiota composition, and local and systemic immune system and metabolome. The effect of fg-TiO2 on the susceptibility of progeny to develop oral tolerance versus FA to cow's milk proteins (CMP) was performed starting at the same baseline time-point, using established models. Sensitization to CMP was investigated by measuring ß-lactoglobulin and casein-specific IgG1 and IgE antibodies, and elicitation of the allergic reaction by measuring mouse mast cell protease (mMCP1) in plasma collected after an oral food challenge. RESULTS: Perinatal exposure to fg-TiO2 at realistic human doses led to an increased propensity to develop FA and an impaired induction of oral tolerance only in young males, which could be related to global baseline alterations in intestinal barrier, gut microbiota composition, local and systemic immunity, and metabolism. CONCLUSIONS: Long-term perinatal exposure to fg-TiO2 alters intestinal homeostasis establishment and predisposes to food allergy, with a clear gender effect.


Asunto(s)
Hipersensibilidad a los Alimentos , Hipersensibilidad a la Leche , Humanos , Masculino , Embarazo , Femenino , Bovinos , Ratones , Animales , Hipersensibilidad a los Alimentos/etiología , Hipersensibilidad a los Alimentos/metabolismo , Inmunoglobulina G , Caseínas , Dieta , Homeostasis
6.
Anal Bioanal Chem ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39046503

RESUMEN

Ricin is a toxic protein regarded as a potential chemical weapon for bioterrorism or criminal use. In the event of a ricin incident, rapid analytical methods are essential for ricin confirmation in a diversity of matrices, from environmental to human or food samples. Mass spectrometry-based methods provide specific toxin identification but require prior enrichment by antibodies to reach trace-level detection in matrices. Here, we describe a novel assay using the glycoprotein asialofetuin as an alternative to antibodies for ricin enrichment, combined with the specific detection of signature peptides by high-resolution mass spectrometry. Additionally, optimizations made to the assay reduced the sample preparation time from 5 h to 80 min only. Method evaluation confirmed the detection of ricin at trace levels over a wide range of pH and in protein-rich samples, illustrating challenging matrices. This new method constitutes a relevant antibody-free solution for the fast and specific mass spectrometry detection of ricin in the situation of a suspected toxin incident, complementary to active ricin determination by adenine release assays.

7.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34344826

RESUMEN

Lysosomes degrade excess or damaged cellular components and recycle their building blocks through membrane transporters. They also act as nutrient-sensing signaling hubs to coordinate cell responses. The membrane protein PQ-loop repeat-containing protein 2 (PQLC2; "picklock two") is implicated in both functions, as it exports cationic amino acids from lysosomes and serves as a receptor and amino acid sensor to recruit the C9orf72/SMCR8/WDR41 complex to lysosomes upon nutrient starvation. Its transport activity is essential for drug treatment of the rare disease cystinosis. Here, we quantitatively studied PQLC2 transport activity using electrophysiological and biochemical methods. Charge/substrate ratio, intracellular pH, and reversal potential measurements showed that it operates in a uniporter mode. Thus, PQLC2 is uncoupled from the steep lysosomal proton gradient, unlike many lysosomal transporters, enabling bidirectional cationic amino acid transport across the organelle membrane. Surprisingly, the specific presence of arginine, but not other substrates (lysine, histidine), in the discharge ("trans") compartment impaired PQLC2 transport. Kinetic modeling of the uniport cycle recapitulated the paradoxical substrate-yet-inhibitor behavior of arginine, assuming that bound arginine facilitates closing of the transporter's cytosolic gate. Arginine binding may thus tune PQLC2 gating to control its conformation, suggesting a potential mechanism for nutrient signaling by PQLC2 to its interaction partners.


Asunto(s)
Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Arginina/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/genética , Animales , Arginina/farmacología , Citosol/metabolismo , Femenino , Células HEK293 , Humanos , Cinética , Lisina/metabolismo , Lisina/farmacología , Lisosomas/metabolismo , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Técnicas de Placa-Clamp , Xenopus , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
8.
Gut ; 72(8): 1581-1591, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36788015

RESUMEN

BACKGROUND AND AIMS: Current prognostic scores of patients with acutely decompensated cirrhosis (AD), particularly those with acute-on-chronic liver failure (ACLF), underestimate the risk of mortality. This is probably because systemic inflammation (SI), the major driver of AD/ACLF, is not reflected in the scores. SI induces metabolic changes, which impair delivery of the necessary energy for the immune reaction. This investigation aimed to identify metabolites associated with short-term (28-day) death and to design metabolomic prognostic models. METHODS: Two prospective multicentre large cohorts from Europe for investigating ACLF and development of ACLF, CANONIC (discovery, n=831) and PREDICT (validation, n=851), were explored by untargeted serum metabolomics to identify and validate metabolites which could allow improved prognostic modelling. RESULTS: Three prognostic metabolites strongly associated with death were selected to build the models. 4-Hydroxy-3-methoxyphenylglycol sulfate is a norepinephrine derivative, which may be derived from the brainstem response to SI. Additionally, galacturonic acid and hexanoylcarnitine are associated with mitochondrial dysfunction. Model 1 included only these three prognostic metabolites and age. Model 2 was built around 4-hydroxy-3-methoxyphenylglycol sulfate, hexanoylcarnitine, bilirubin, international normalised ratio (INR) and age. In the discovery cohort, both models were more accurate in predicting death within 7, 14 and 28 days after admission compared with MELDNa score (C-index: 0.9267, 0.9002 and 0.8424, and 0.9369, 0.9206 and 0.8529, with model 1 and model 2, respectively). Similar results were found in the validation cohort (C-index: 0.940, 0.834 and 0.791, and 0.947, 0.857 and 0.810, with model 1 and model 2, respectively). Also, in ACLF, model 1 and model 2 outperformed MELDNa 7, 14 and 28 days after admission for prediction of mortality. CONCLUSIONS: Models including metabolites (CLIF-C MET) reflecting SI, mitochondrial dysfunction and sympathetic system activation are better predictors of short-term mortality than scores based only on organ dysfunction (eg, MELDNa), especially in patients with ACLF.


Asunto(s)
Insuficiencia Hepática Crónica Agudizada , Metoxihidroxifenilglicol , Humanos , Pronóstico , Estudios Prospectivos , Cirrosis Hepática/complicaciones , Inflamación/complicaciones , Metabolómica , Mitocondrias
9.
J Proteome Res ; 21(2): 547-556, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-34968056

RESUMEN

We addressed here the need for improved sensitivity of top-down mass spectrometry for identification, differentiation, and absolute quantification of sequence variants of SEA, a bacterial toxin produced by Staphylococcus aureus and regularly involved in food poisoning outbreaks (FPO). We combined immunoaffinity enrichment, a protein internal standard, and optimized acquisition conditions, either by full-scan high-resolution mass spectrometry (HRMS) or multiplex parallel reaction monitoring (PRM) mode. Deconvolution of full-scan HRMS signal and PRM detection of variant-specific fragment ions allowed confident identification of each SEA variant. Summing the PRM signal of variant-common fragment ions was most efficient for absolute quantification, illustrated by a sensitivity down to 2.5 ng/mL and an assay variability below 15%. Additionally, we showed that relative PRM fragment ion abundances constituted a supplementary specificity criterion in top-down quantification. The top-down method was successfully evaluated on a panel of enterotoxin-producing strains isolated during FPO, in parallel to the conventional whole genome sequencing, ELISA, and bottom-up mass spectrometry methods. Top-down provided at the same time correct identification of the SEA variants produced and precise determination of the toxin level. The raw files generated in this study can be found on PASSEL (Peptide Atlas) under data set identifier PASS01710.


Asunto(s)
Enterotoxinas , Microbiología de Alimentos , Enterotoxinas/análisis , Enterotoxinas/genética , Enterotoxinas/metabolismo , Espectrometría de Masas/métodos , Staphylococcus aureus/metabolismo
10.
Metabolomics ; 18(6): 40, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35699774

RESUMEN

INTRODUCTION: Accuracy of feature annotation and metabolite identification in biological samples is a key element in metabolomics research. However, the annotation process is often hampered by the lack of spectral reference data in experimental conditions, as well as logistical difficulties in the spectral data management and exchange of annotations between laboratories. OBJECTIVES: To design an open-source infrastructure allowing hosting both nuclear magnetic resonance (NMR) and mass spectra (MS), with an ergonomic Web interface and Web services to support metabolite annotation and laboratory data management. METHODS: We developed the PeakForest infrastructure, an open-source Java tool with automatic programming interfaces that can be deployed locally to organize spectral data for metabolome annotation in laboratories. Standardized operating procedures and formats were included to ensure data quality and interoperability, in line with international recommendations and FAIR principles. RESULTS: PeakForest is able to capture and store experimental spectral MS and NMR metadata as well as collect and display signal annotations. This modular system provides a structured database with inbuilt tools to curate information, browse and reuse spectral information in data treatment. PeakForest offers data formalization and centralization at the laboratory level, facilitating shared spectral data across laboratories and integration into public databases. CONCLUSION: PeakForest is a comprehensive resource which addresses a technical bottleneck, namely large-scale spectral data annotation and metabolite identification for metabolomics laboratories with multiple instruments. PeakForest databases can be used in conjunction with bespoke data analysis pipelines in the Galaxy environment, offering the opportunity to meet the evolving needs of metabolomics research. Developed and tested by the French metabolomics community, PeakForest is freely-available at https://github.com/peakforest .


Asunto(s)
Metabolómica , Metadatos , Curaduría de Datos/métodos , Espectrometría de Masas/métodos , Metaboloma , Metabolómica/métodos
11.
Anal Biochem ; 636: 114477, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34808106

RESUMEN

Metabolomics refers to the study of biological components below 1000 Daltons (Da) involved in metabolic pathways as substrates, products or effectors. According to the interconnected metabolic disturbances that have been described in the pathophysiology of hepatic encephalopathy (HE), this technique appears to be well adapted to study and better delineate the disease. This review will focus on recent advances in metabolomics in the field of HE. Thus, after a brief overview of the general principles of metabolomics, we will discuss metabolomics as a potentially efficient tool for unraveling new HE pathophysiological insights, biomarkers identification, or as a predicting tool for treatment response or outcome prognosis. Finally, we will give our vision on the prospects offered by metabolomics for improving care of HE patients.


Asunto(s)
Encefalopatía Hepática/metabolismo , Encefalopatía Hepática/terapia , Redes y Vías Metabólicas , Metabolómica , Biomarcadores/metabolismo , Humanos , Pronóstico
12.
Anal Bioanal Chem ; 414(2): 759-789, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34432105

RESUMEN

Metabolomics refers to the large-scale detection, quantification, and analysis of small molecules (metabolites) in biological media. Although metabolomics, alone or combined with other omics data, has already demonstrated its relevance for patient stratification in the frame of research projects and clinical studies, much remains to be done to move this approach to the clinical practice. This is especially true in the perspective of being applied to personalized/precision medicine, which aims at stratifying patients according to their risk of developing diseases, and tailoring medical treatments of patients according to individual characteristics in order to improve their efficacy and limit their toxicity. In this review article, we discuss the main challenges linked to analytical chemistry that need to be addressed to foster the implementation of metabolomics in the clinics and the use of the data produced by this approach in personalized medicine. First of all, there are already well-known issues related to untargeted metabolomics workflows at the levels of data production (lack of standardization), metabolite identification (small proportion of annotated features and identified metabolites), and data processing (from automatic detection of features to multi-omic data integration) that hamper the inter-operability and reusability of metabolomics data. Furthermore, the outputs of metabolomics workflows are complex molecular signatures of few tens of metabolites, often with small abundance variations, and obtained with expensive laboratory equipment. It is thus necessary to simplify these molecular signatures so that they can be produced and used in the field. This last point, which is still poorly addressed by the metabolomics community, may be crucial in a near future with the increased availability of molecular signatures of medical relevance and the increased societal demand for participatory medicine.


Asunto(s)
Metabolómica/métodos , Pruebas en el Punto de Atención , Medicina de Precisión , Biomarcadores/metabolismo , Química Analítica , Humanos
13.
Nucleic Acids Res ; 48(8): 4115-4138, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32182340

RESUMEN

Epigenetic regulation of gene expression is tightly controlled by the dynamic modification of histones by chemical groups, the diversity of which has largely expanded over the past decade with the discovery of lysine acylations, catalyzed from acyl-coenzymes A. We investigated the dynamics of lysine acetylation and crotonylation on histones H3 and H4 during mouse spermatogenesis. Lysine crotonylation appeared to be of significant abundance compared to acetylation, particularly on Lys27 of histone H3 (H3K27cr) that accumulates in sperm in a cleaved form of H3. We identified the genomic localization of H3K27cr and studied its effects on transcription compared to the classical active mark H3K27ac at promoters and distal enhancers. The presence of both marks was strongly associated with highest gene expression. Assessment of their co-localization with transcription regulators (SLY, SOX30) and chromatin-binding proteins (BRD4, BRDT, BORIS and CTCF) indicated systematic highest binding when both active marks were present and different selective binding when present alone at chromatin. H3K27cr and H3K27ac finally mark the building of some sperm super-enhancers. This integrated analysis of omics data provides an unprecedented level of understanding of gene expression regulation by H3K27cr in comparison to H3K27ac, and reveals both synergistic and specific actions of each histone modification.


Asunto(s)
Elementos de Facilitación Genéticos , Epigénesis Genética , Código de Histonas , Regiones Promotoras Genéticas , Espermatogénesis/genética , Acetilcoenzima A/metabolismo , Acetilación , Acilcoenzima A/metabolismo , Animales , Evolución Biológica , Crotonatos/metabolismo , Genómica , Histonas/química , Histonas/metabolismo , Lisina/metabolismo , Masculino , Metabolómica , Ratones Endogámicos C57BL , Proteómica , Transcripción Genética , Levaduras/metabolismo , Levaduras/fisiología
14.
J Proteome Res ; 20(2): 1434-1443, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33497234

RESUMEN

Alternative methods to RT-PCR for SARS-CoV-2 detection are investigated to provide complementary data on viral proteins, increase the number of tests performed, or identify false positive/negative results. Here, we have developed a simple mass spectrometry assay for SARS-CoV-2 in nasopharyngeal swab samples using common laboratory reagents. The method employs high sensitivity and selectivity targeted mass spectrometry detection, monitoring nine constitutive peptides representative of the three main viral proteins and a straightforward pellet digestion protocol for convenient routine applications. Absolute quantification of N, M, and S proteins was achieved by addition of isotope-labeled versions of best peptides. Limit of detection, recovery, precision, and linearity were thoroughly evaluated in four representative viral transport media (VTM) containing distinct total protein content. The protocol was sensitive in all swab media with limit of detection determined at 2 × 103 pfu/mL, corresponding to as low as 30 pfu injected into the LC-MS/MS system. When tested on VTM-stored nasopharyngeal swab samples from positive and control patients, sensitivity was similar to or better than rapid immunoassay dipsticks, revealing a corresponding RT-PCR detection threshold at Ct ∼ 24. The study represents the first thorough evaluation of sensitivity and robustness of targeted mass spectrometry in nasal swabs, constituting a promising SARS-CoV-2 antigen assay for the first-line diagnosis of COVID-19 and compatible with the constraints of clinical settings. The raw files generated in this study can be found on PASSEL (Peptide Atlas) under data set identifier PASS01646.


Asunto(s)
COVID-19/diagnóstico , Cromatografía Liquida/métodos , Nasofaringe/virología , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Espectrometría de Masas en Tándem/métodos , COVID-19/virología , Medios de Cultivo , Humanos , Nucleocápside/metabolismo , Proteómica/métodos , Reproducibilidad de los Resultados , SARS-CoV-2/fisiología , Sensibilidad y Especificidad , Manejo de Especímenes/instrumentación , Manejo de Especímenes/métodos , Proteínas Virales/metabolismo
15.
J Biol Chem ; 295(16): 5519-5532, 2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-32169901

RESUMEN

Extracytoplasmic sugar decoration of glycopolymer components of the bacterial cell wall contributes to their structural diversity. Typically, the molecular mechanism that underpins such a decoration process involves a three-component glycosylation system (TGS) represented by an undecaprenyl-phosphate (Und-P) sugar-activating glycosyltransferase (Und-P GT), a flippase, and a polytopic glycosyltransferase (PolM GT) dedicated to attaching sugar residues to a specific glycopolymer. Here, using bioinformatic analyses, CRISPR-assisted recombineering, structural analysis of cell wall-associated polysaccharides (CWPS) through MALDI-TOF MS and methylation analysis, we report on three such systems in the bacterium Lactococcus lactis On the basis of sequence similarities, we first identified three gene pairs, csdAB, csdCD, and csdEF, each encoding an Und-P GT and a PolM GT, as potential TGS component candidates. Our experimental results show that csdAB and csdCD are involved in Glc side-chain addition on the CWPS components rhamnan and polysaccharide pellicle (PSP), respectively, whereas csdEF plays a role in galactosylation of lipoteichoic acid (LTA). We also identified a potential flippase encoded in the L. lactis genome (llnz_02975, cflA) and confirmed that it participates in the glycosylation of the three cell wall glycopolymers rhamnan, PSP, and LTA, thus indicating that its function is shared by the three TGSs. Finally, we observed that glucosylation of both rhamnan and PSP can increase resistance to bacteriophage predation and that LTA galactosylation alters L. lactis resistance to bacteriocin.


Asunto(s)
Pared Celular/metabolismo , Lactococcus lactis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Desoxiazúcares/metabolismo , Galactosa/metabolismo , Glicosilación , Lactococcus lactis/genética , Lipopolisacáridos/metabolismo , Mananos/metabolismo , Ácidos Teicoicos/metabolismo
16.
J Hepatol ; 74(5): 1117-1131, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33276029

RESUMEN

BACKGROUND & AIMS: Systemic inflammation and organ failure(s) are the hallmarks of acute-on-chronic liver failure (ACLF), yet their pathogenesis remains uncertain. Herein, we aimed to assess the role of amino acids in these processes in patients with ACLF. METHODS: The blood metabolomic database of the CANONIC study (comprising 137 metabolites, with 43% related to amino acids) - obtained in 181 patients with ACLF and 650 with acute decompensation without ACLF (AD) - was reanalyzed with a focus on amino acids, in particular 9 modules of co-regulated metabolites. We also compared blood metabolite levels between ACLF and AD. RESULTS: The main findings in ACLF were: i) Metabolite modules were increased in parallel with increased levels of markers of systemic inflammation and oxidative stress. ii) Seventy percent of proteinogenic amino acids were present and most were increased. iii) A metabolic network, comprising the amino acids aspartate, glutamate, the serine-glycine one-carbon metabolism (folate cycle), and methionine cycle, was activated, suggesting increased purine and pyrimidine nucleotide synthesis. iv) Cystathionine, L-cystine, glutamate and pyroglutamate, which are involved in the transsulfuration pathway (a methionine cycle branch) were increased, consistent with increased synthesis of the antioxidant glutathione. v) Intermediates of the catabolism of 5 out of the 6 ketogenic amino acids were increased. vi) The levels of spermidine (a polyamine inducer of autophagy with anti-inflammatory effects) were decreased. CONCLUSIONS: In ACLF, blood amino acids fueled protein and nucleotide synthesis required for the intense systemic inflammatory response. Ketogenic amino acids were extensively catabolized to produce energy substrates in peripheral organs, an effect that was insufficient because organs failed. Finally, the decrease in spermidine levels may cause a defect in autophagy contributing to the proinflammatory phenotype in ACLF. LAY SUMMARY: Systemic inflammation and organ failures are hallmarks of acute-on-chronic liver failure (ACLF). Herein, we aimed to characterize the role of amino acids in these processes. The blood metabolome of patients with acutely decompensated cirrhosis, and particularly those with ACLF, reveals evidence of intense skeletal muscle catabolism. Importantly, amino acids (along with glucose), are used for intense anabolic, energy-consuming metabolism in patients with ACLF, presumably to support de novo nucleotide and protein synthesis in the activated innate immune system.


Asunto(s)
Insuficiencia Hepática Crónica Agudizada , Aminoácidos , Inflamación/metabolismo , Metaboloma/inmunología , Insuficiencia Multiorgánica , Insuficiencia Hepática Crónica Agudizada/inmunología , Insuficiencia Hepática Crónica Agudizada/metabolismo , Insuficiencia Hepática Crónica Agudizada/fisiopatología , Aminoácidos/clasificación , Aminoácidos/metabolismo , Biomarcadores/metabolismo , Femenino , Humanos , Cirrosis Hepática/complicaciones , Masculino , Redes y Vías Metabólicas/fisiología , Metabolismo/fisiología , Persona de Mediana Edad , Insuficiencia Multiorgánica/diagnóstico , Insuficiencia Multiorgánica/etiología , Pronóstico , Biosíntesis de Proteínas/fisiología , Índice de Severidad de la Enfermedad
17.
J Hepatol ; 75(5): 1116-1127, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34245803

RESUMEN

BACKGROUND & AIMS: Acute decompensation (AD) of cirrhosis is a heterogeneous clinical entity associated with moderate mortality. In some patients, this condition develops quickly into the more deadly acute-on-chronic liver failure (ACLF), in which other organs such as the kidneys or brain fail. The aim of this study was to characterize the blood lipidome in a large series of patients with cirrhosis and identify specific signatures associated with AD and ACLF development. METHODS: Serum untargeted lipidomics was performed in 561 patients with AD (518 without and 43 with ACLF) (discovery cohort) and in 265 patients with AD (128 without and 137 with ACLF) in whom serum samples were available to perform repeated measurements during the 28-day follow-up (validation cohort). Analyses were also performed in 78 patients with AD included in a therapeutic albumin trial (43 patients with compensated cirrhosis and 29 healthy individuals). RESULTS: The circulating lipid landscape associated with cirrhosis was characterized by a generalized suppression, which was more manifest during AD and in non-surviving patients. By computing discriminating accuracy and the variable importance projection score for each of the 223 annotated lipids, we identified a sphingomyelin fingerprint specific for AD of cirrhosis and a distinct cholesteryl ester and lysophosphatidylcholine fingerprint for ACLF. Liver dysfunction and infections were the principal net contributors to these fingerprints, which were dynamic and interchangeable between patients with AD whose condition worsened to ACLF and those who improved. Notably, blood lysophosphatidylcholine levels increased in these patients after albumin therapy. CONCLUSIONS: Our findings provide insights into the lipid landscape associated with decompensation of cirrhosis and ACLF progression and identify unique non-invasive diagnostic biomarkers of advanced cirrhosis. LAY SUMMARY: Analysis of lipids in blood from patients with advanced cirrhosis reveals a general suppression of their levels in the circulation of these patients. A specific group of lipids known as sphingomyelins are useful to distinguish between patients with compensated and decompensated cirrhosis. Another group of lipids designated cholesteryl esters further distinguishes patients with decompensated cirrhosis who are at risk of developing organ failures.


Asunto(s)
Fibrosis/sangre , Lipidómica/normas , Anciano , Deterioro Clínico , Estudios de Cohortes , Femenino , Fibrosis/epidemiología , Humanos , Lipidómica/métodos , Lipidómica/estadística & datos numéricos , Masculino , Persona de Mediana Edad , Pronóstico , Índice de Severidad de la Enfermedad
18.
Anal Bioanal Chem ; 413(5): 1337-1351, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33410976

RESUMEN

Sulfur mustard (SM), a chemical warfare agent, is a strong alkylating compound that readily reacts with numerous biomolecules. The goal of the present work was to define and validate new biomarkers of exposure to SM that could be easily accessible in urine or plasma. Because investigations using SM are prohibited by the Organisation for the Prohibition of Chemical Weapons, we worked with 2-chloroethyl ethyl sulfide (CEES), a monofunctional analog of SM. We developed an ultra-high-pressure liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) approach to the conjugate of CEES to glutathione and two of its metabolites: the cysteine and the N-acetylcysteine conjugates. The N7-guanine adduct of CEES (N7Gua-CEES) was also targeted. After synthesizing the specific biomarkers, a solid-phase extraction protocol and a UHPLC-MS/MS method with isotopic dilution were optimized. We were able to quantify N7Gua-CEES in the DNA of HaCaT keratinocytes and of explants of human skin exposed to CEES. N7Gua-CEES was also detected in the culture medium of these two models, together with the glutathione and the cysteine conjugates. In contrast, the N-acetylcysteine conjugate was not detected. The method was then applied to plasma from mice cutaneously exposed to CEES. All four markers could be detected. Our present results thus validate both the analytical technique and the biological relevance of new, easily quantifiable biomarkers of exposure to CEES. Because CEES behaves very similar to SM, the results are promising for application to this toxic of interest.


Asunto(s)
Sustancias para la Guerra Química/efectos adversos , Glutatión/análogos & derivados , Guanina/análogos & derivados , Gas Mostaza/análogos & derivados , Animales , Línea Celular , Sustancias para la Guerra Química/análisis , Cromatografía Líquida de Alta Presión/métodos , Exposición a Riesgos Ambientales/efectos adversos , Glutatión/efectos adversos , Guanina/efectos adversos , Humanos , Queratinocitos/efectos de los fármacos , Ratones , Gas Mostaza/efectos adversos , Gas Mostaza/análisis , Piel/efectos de los fármacos , Espectrometría de Masas en Tándem/métodos , Pruebas de Toxicidad/métodos
19.
Genes Dev ; 27(15): 1680-92, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23884607

RESUMEN

The conversion of male germ cell chromatin to a nucleoprotamine structure is fundamental to the life cycle, yet the underlying molecular details remain obscure. Here we show that an essential step is the genome-wide incorporation of TH2B, a histone H2B variant of hitherto unknown function. Using mouse models in which TH2B is depleted or C-terminally modified, we show that TH2B directs the final transformation of dissociating nucleosomes into protamine-packed structures. Depletion of TH2B induces compensatory mechanisms that permit histone removal by up-regulating H2B and programming nucleosome instability through targeted histone modifications, including lysine crotonylation and arginine methylation. Furthermore, after fertilization, TH2B reassembles onto the male genome during protamine-to-histone exchange. Thus, TH2B is a unique histone variant that plays a key role in the histone-to-protamine packing of the male genome and guides genome-wide chromatin transitions that both precede and follow transmission of the male genome to the egg.


Asunto(s)
Cromatina/metabolismo , Histonas/metabolismo , Protaminas/metabolismo , Animales , Epigénesis Genética , Femenino , Fertilización/fisiología , Regulación del Desarrollo de la Expresión Génica , Genoma , Histonas/genética , Masculino , Meiosis , Ratones , Nucleosomas , Espermatogénesis/genética , Testículo/metabolismo
20.
J Proteome Res ; 19(2): 914-925, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-31913637

RESUMEN

Well-characterized prognostic biomarkers and reliable quantitative methods are key in sepsis management. Among damage-associated molecular patterns, S100A8/S100A9 complexes are reported to be markers for injured cells and to improve the prediction of death in septic shock patients. In view of the structural diversity observed for the intracellular forms, insight into circulating complexes and proteoforms is required to establish prognostic biomarkers. Here, we developed top-down and bottom-up proteomics to characterize the association of S100A8 and S100A9 in complexes and major circulating proteoforms. An antibody-free method was developed for absolute quantification of S100A8/S100A9 in a cohort of 49 patients to evaluate the prognostic value on the first day after admission for septic shock. The predominant circulating forms identified by top-down proteomics were S100A8, mono-oxidized S100A8, truncated acetylated S100A9, and S-nitrosylated S100A9. S100A8, truncated acetylated S100A9, and mono-oxidized S100A8 discriminated between survivors and nonsurvivors, along with total S100A8/S100A9 measured by the antibody-free bottom-up method. Overall, new insights into circulating S100A8/S100A9 and confirmation of its prognostic value in septic shock are crucial in qualification of this biomarker. Also, the simple antibody-free assay would support the harmonization of S100A8/S100A9 measurements.


Asunto(s)
Proteómica , Choque Séptico , Calgranulina A/genética , Calgranulina B/genética , Humanos , Pronóstico , Choque Séptico/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA