Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Plant Biotechnol J ; 19(1): 138-152, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32654333

RESUMEN

Unicellular and multicellular tomato trichomes function as mechanical and chemical barriers against herbivores. Auxin treatment increased the formation of II, V and VI type trichomes in tomato leaves. The auxin response factor gene SlARF4, which was highly expressed in II, V and VI type trichomes, positively regulated the auxin-induced formation of II, V and VI type trichomes in the tomato leaves. SlARF4 overexpression plants with high densities of these trichomes exhibited tolerance to spider mites. Two R2R3 MYB genes, SlTHM1 and SlMYB52, were directly targeted and inhibited by SlARF4. SlTHM1 was specifically expressed in II and VI type trichomes and negatively regulated the auxin-induced formation of II and VI type trichomes in the tomato leaves. SlTHM1 down-regulation plants with high densities of II and VI type trichomes also showed tolerance to spider mites. SlMYB52 was specifically expressed in V type trichomes and negatively regulated the auxin-induced formation of V type trichome in the tomato leaves. The regulation of SlARF4 on the formation of II, V and VI type trichomes depended on SlTHM1 and SlMYB52, which directly targeted cyclin gene SlCycB2 and increased its expression. In conclusion, our data indicates that the R2R3 MYB-dependent auxin signalling pathway regulates the formation of II, V and VI type trichomes in tomato leaves. Our study provides an effective method for improving the tolerance of tomato to spider mites.


Asunto(s)
Solanum lycopersicum , Tetranychidae , Animales , Regulación de la Expresión Génica de las Plantas/genética , Ácidos Indolacéticos , Solanum lycopersicum/genética , Hojas de la Planta/genética , Tetranychidae/genética , Tricomas
2.
Plant Physiol ; 183(3): 854-868, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32414899

RESUMEN

Tomato (Solanum lycopersicum) fruit ripening is accompanied by the degradation of chlorophylls and the accumulation of carotenoids and flavonoids. Tomato SlMYB72 belongs to the R2R3 MYB subfamily, is located in the nucleus, and possesses transcriptional activator activity. Down-regulation of the SlMYB72 gene produced uneven-colored fruits; that is, dark green spots appeared on immature and mature green fruits, whereas yellow spots appeared on red fruits. Down-regulation of SlMYB72 increased chlorophyll accumulation, chloroplast biogenesis and development, and photosynthesis rate in fruits. This down-regulation decreased lycopene content, promoted ß-carotene production and chromoplast development, and increased flavonoid accumulation in fruits. RNA sequencing analysis revealed that down-regulation of SlMYB72 altered the expression levels of genes involved in the biosynthesis of chlorophylls, carotenoids, and flavonoids. SlMYB72 protein interacted with the auxin response factor SlARF4. SlMYB72 directly targeted protochlorophyllide reductase, Mg-chelatase H subunit, and knotted1-like homeobox2 genes and regulated chlorophyll biosynthesis and chloroplast development. SlMYB72 directly bound to phytoene synthase, ζ-carotene isomerase, and lycopene ß-cyclase genes and regulated carotenoid biosynthesis. SlMYB72 directly targeted 4-coumarate-coenzyme A ligase and chalcone synthase genes and regulated the biosynthesis of flavonoids and phenolic acid. The uneven color phenotype in RNA interference-SlMYB72 fruits was due to uneven silencing of SlMYB72 and uneven expression of chlorophyll, carotenoid, and flavonoid biosynthesis genes. In summary, this study identified important roles for SlMYB72 in the regulation of chlorophyll, carotenoid, and flavonoid metabolism and provided a potential target to improve fruit nutrition in horticultural crops.


Asunto(s)
Carotenoides/metabolismo , Clorofila/genética , Clorofila/metabolismo , Flavonoides/genética , Frutas/genética , Frutas/metabolismo , Solanum lycopersicum/genética , Flavonoides/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Solanum lycopersicum/metabolismo
3.
J Exp Bot ; 67(8): 2263-75, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26889012

RESUMEN

The DNA binding with one finger (Dof) proteins, a family of plant-specific transcription factors, are involved in a variety of plant biological processes. However, little information is available on their involvement in fruit ripening. We have characterized 25 MaDof genes from banana fruit (Musa acuminata), designated as MaDof1-MaDof25 Gene expression analysis in fruit subjected to different ripening conditions revealed that MaDofs were differentially expressed during different stages of ripening. MaDof10, 23, 24, and 25 were ethylene-inducible and nuclear-localized, and their transcript levels increased during fruit ripening. Moreover, yeast two-hybrid and bimolecular fluorescence complementation analyses demonstrated a physical interaction between MaDof23 and MaERF9, a potential regulator of fruit ripening reported in a previous study. We determined that MaDof23 is a transcriptional repressor, whereas MaERF9 is a transcriptional activator. We suggest that they might act antagonistically in regulating 10 ripening-related genes, including MaEXP1/2/3/5, MaXET7, MaPG1, MaPME3, MaPL2, MaCAT, and MaPDC, which are associated with cell wall degradation and aroma formation. Taken together, our findings provide new insight into the transcriptional regulation network controlling banana fruit ripening.


Asunto(s)
Frutas/crecimiento & desarrollo , Frutas/genética , Genes de Plantas , Musa/genética , Proteínas de Plantas/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Núcleo Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Musa/crecimiento & desarrollo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Unión Proteica , Transporte de Proteínas , Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Análisis de Secuencia de ADN , Fracciones Subcelulares/metabolismo , Nicotiana/genética , Factores de Transcripción/química , Factores de Transcripción/genética , Activación Transcripcional/genética
4.
Food Chem X ; 21: 101169, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38357366

RESUMEN

Mango (Mangifera indica L.) is a major tropical fruit, but a short postharvest life hampers marketing. The objective of this work is to assess the influence of a novel nanocomposite poly (ethylene-co-vinyl acetate) (EVA) film and Chitosan (CTS) affect on mango postharvest quality while stored at 20 °C. The results showed that the film coating treatment reduced the decay rate and weight loss of mangoes, maintaining good postharvest quality of mango fruit. The film coating treatment increased the antioxidant capacity of mangoes by inhibiting PPO activity and increasing the activity of antioxidant enzymes. ACS, ACO, and ethylene release were all suppressed, as well as the expression of the ethylene receptors genes ETR1, ETR2, and ERS2, thus delaying mango aging. After harvest, the EVA treatment was superior to the CTS treatment in mango preservation.

5.
Food Chem ; 458: 140204, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38964092

RESUMEN

The bacterial derived osmolyte ectoine has been shown to stabilize cell structure and function, a property that may help to extend the shelf life of broccoli. The impact of ectoine on broccoli stored for 4 d at 20 °C and 90% relative humidity was investigated. Results indicated that 0.20% ectoine treatment maintained the quality of broccoli, by reducing rate of respiration and ethylene generation, while increasing the levels of total phenolics, flavonoids, TSS, soluble protein, and vitamin C, relative to control. Headspace-gas chromatography-mass spectrometry, transcriptomic and metabolomic analyses revealed that ectoine stabilized aroma components in broccoli by maintaining level of volatile compounds and altered the expression of genes and metabolites associated with sulfur metabolism, as well as fatty acid and amino acid biosynthesis pathways. These findings provide a greater insight into how ectoine preserves the flavor and nutritional quality of broccoli, thus, extending its shelf life.

6.
J Adv Res ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38945295

RESUMEN

INTRODUCTION: The postharvest physiological disorder known as 'black spot' in radish roots (Raphanus sativus) poses a significant challenge to quality maintenance during storage, particularly under summer conditions. The cause of this disorder, however, is poorly understood. OBJECTIVES: Characterize the underlying causes of 'black spot' disorder in radish roots and identify strategies to delay its onset. METHODS: Radish roots were placed in either polyvinyl chloride (PVC) or oriented polypropylene (OPP) packaging and stored for 4 days at 30 °C. Appearance and physiological parameters were assessed and transcriptomic and metabolomic analyses were conducted to identify the key molecular and biochemical factors contributing to the disorder and strategies for delaying its onset and development. RESULTS: OPP packaging effectively delayed the onset of 'black spot' in radishes, potentially due to changes in phenolic and lipid metabolism. Regarding phenolic metabolism, POD and PPO activity decreased, RsCCR and RsPOD expression was downregulated, genes involved in phenols and flavonoids synthesis were upregulated and their content increased, preventing the oxidative browning of phenols and generally enhancing stress tolerance. Regarding lipid metabolism, the level of alpha-linolenic acid increased, and genes regulating cutin and wax synthesis were upregulated. Notably, high flavonoid and low ROS levels collectively inhibited RsPLA2G expression, which reduced the production of arachidonic acid, pro-inflammatory compounds (LTA4 and PGG2), and ROS, alleviating the inflammatory response and oxidative stress in radish epidermal tissues. CONCLUSION: PVC packaging enhanced the postharvest onset of 'black spot' in radishes, while OPP packaging delayed both its onset and development. Our study provides insights into the response of radishes to different packaging materials during storage, and the causes and host responses that either enhance or delay 'black spot' disorder onset. Further studies will be conducted to confirm the molecular and biochemical processes responsible for the onset and development of 'black spot' in radishes.

7.
J Adv Res ; 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37406731

RESUMEN

INTRODUCTION: Folic acid (FA) is a critical metabolite in all living organisms and an important nutritional component of broccoli. Few studies have been conducted on the impact of an exogenous application of FA on the postharvest physiology of fruits and vegetables during storage. In this regard, the mechanism by which an exogenous application of FA extends the postharvest quality of broccoli is unclear. OBJECTIVE: This study utilized a multicomponent analysis to investigate how an exogenous application of FA effects the postharvest quality of broccoli. METHODS: Broccoli was soaked in 5 mg/L FA for 10 min and the effect of the treatment on the appearance and nutritional quality of broccoli was evaluated. These data were combined with transcriptomic, metabolomic, and DNA methylation data to provide insight into the potential mechanism by which FA delays senescence. RESULTS: The FA treatment inhibited the yellowing of broccoli during storage. CHH methylation was identified as the main type of methylation that occurs in broccoli and the FA treatment was found to inhibit DNA methylation, promote the accumulation of endogenous FA and chlorophyl, and inhibit ethylene biosynthesis in stored broccoli. The FA treatment also prevented the formation of off-odors by inhibiting the degradation of glucosinolate. CONCLUSIONS: FA treatment inhibited the loss of nutrients during the storage of broccoli, delayed its yellowing, and inhibited the generation of off-odors. Our study provides deeper insight into the mechanism by which the postharvest application of FA delays postharvest senescence in broccoli and provides the foundation for further studies of postharvest metabolism in broccoli.

8.
Front Plant Sci ; 14: 1150854, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37636085

RESUMEN

Citrus fruits are cultivated around the world, and they face drought stress frequently during their growth and development. Previous studies showed that citrus plants biosynthesized flavonoid compounds in response to abiotic stress. In this study, we have quantified 37 flavonoid compounds from the leaves of three distinct citrus species including sour orange (drought-tolerant), pummelo 'Majia you pummelo' (drought-sensitive), and lemon (drought-sensitive). The 37 flavonoids consisted of 12 flavones, 10 flavonols, 6 flavanones, 5 isoflavanones, and 1 each for chalcone, flavanol, flavanonol, and flavone glycoside. Drought stress differentially altered the flavonoid metabolism in drought-tolerant and drought-sensitive citrus species. The kaempferol 3-neohesperidoside was 17-fold higher in sour orange (124.41 nmol/L) after 18 days of drought stress than lemon (7.33 nmol/L). In sour orange, neohesperidin (69.49 nmol/L) was 1,407- and 37-fold higher than pummelo and lemon, respectively. In sour orange, some flavonoids were significantly increased, such as vitexin, neohesperidin, cynaroside, hyperoside, genistin, kaempferol 3-neohesperidoside, eriocitrin, and luteolin, in response to drought stress, whereas in lemon, these flavonoids were significantly decreased or not altered significantly in response to drought stress. Moreover, the total contents of flavonoids and antioxidant activity were increased in sour orange as compared with pummelo and lemon. The genes associated with flavonoid biosynthesis (PAL, CHI, FLS, GT1, F3H, F3'M, C4H, 4CL, FLS, FG2, FG3, and CYP81E1) were more highly expressed in sour orange leaves than in pummelo and lemon after drought stress. These outcomes showed that pummelo and lemon failed to biosynthesize antioxidant flavonoids to cope with the prolonged drought stress, whereas the sour orange biosynthesized fortified flavonoid compounds with increased antioxidant activity to detoxify the harmful effects of reactive oxygen species produced during drought stress.

9.
Foods ; 10(12)2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-34945515

RESUMEN

This study examines ultraviolet-C (UV-C) treatment supplementation as a means of inhibiting the senescence of pepino fruit after harvest. Pepino fruits were subjected to 1.5 kJ/m2 UV-C treatments and then packed and stored at 10 °C for 28 d. Results showed that 1.5 kJ/m2 UV-C treatment had the greatest ability to maintain firmness, and reduced the level of respiration and ethylene production. Further analysis indicated that the 1.5 kJ/m2 UV-C treatment maintained the content of total soluble solids (TSS), chlorophyll, vitamin C, flavonoids, and total phenolics. Lower levels of malondialdehyde (MDA) and higher levels of antioxidant enzyme activity were found in UV-C treated fruit during storage. An electronic nose (E-nose) and headspace-gas chromatography-mass spectrometry (HS-GC-MS) was used to determine volatile compounds. Results revealed that the UV-C treatment may promote the synthesis of a large number of alcohols and esters by maintaining the overall level of acids, aldehydes, and esters in fruits. This may contribute to the maintenance of the flavor of harvested fruits. In conclusion, 1.5 kJ/m2 UV-C treatment was demonstrated to be an effective treatment for the maintenance of the sensory, nutritional, and flavor parameters of pepino fruit.

10.
Hortic Res ; 6: 108, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31645963

RESUMEN

Pepper species (Capsicum spp.) are widely used as food, spice, decoration, and medicine. Despite the recent old-world culinary impact, more than 50 commercially recognized pod types have been recorded worldwide from three taxonomic complexes (A, B, and P). The current study aimed to apply a pan-plastome approach to resolve the plastomic boundaries among those complexes and identify effective loci for the taxonomical resolution and molecular identification of the studied species/varieties. High-resolution pan-plastomes of five species and two varieties were assembled and compared from 321 accessions. Phyloplastomic and network analyses clarified the taxonomic position of the studied species/varieties and revealed a pronounced number of accessions to be the rare and endemic species, C. galapagoense, that were mistakenly labeled as C. annuum var. glabriusculum among others. Similarly, some NCBI-deposited plastomes were clustered differently from their labels. The rpl23-trnI intergenic spacer contained a 44 bp tandem repeat that, in addition to other InDels, was capable of discriminating the investigated Capsicum species/varieties. The rps16-trnQ/rbcL-accD/ycf3-trnS gene set was determined to be sufficiently polymorphic to retrieve the complete phyloplastomic signal among the studied Capsicum spp. The pan-plastome approach was shown to be useful in resolving the taxonomical complexes, settling the incomplete lineage sorting conflict and developing a molecular marker set for Capsicum spp. identification.

11.
J Plant Physiol ; 169(2): 176-82, 2012 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-22118816

RESUMEN

Embryogenic callus (EC) induced from petioles of alfalfa (Medicago sativa L. cv. Jinnan) on B5h medium turned green, compact and non-embryogenic when the kinetin (KN) in the medium was replaced partially or completely by thidiazuron (TDZ). The application of CoCl2, which is an inhibitor of 1-aminocyclopropane-1-carboxylate oxidase (ACO), counteracted the effect of TDZ. Ethylene has been shown to be involved in the modulation of TDZ-induced morphogenesis responses. However, very little is known about the genes involved in ethylene formation during somatic embryogenesis (SE). To investigate whether ethylene mediated by ACO is involved in the effect of TDZ on inhibition of embryogenic competence of the alfalfa callus. In this study we cloned full-length ACO cDNA from the alfalfa callus, named MsACO, and observed changes in this gene expression during callus formation and induction of SE under treatment with TDZ or TDZ plus CoCl2. RNA blot analysis showed that during the EC subcultural period, the expression level of MsACO in EC was significantly increased on the 2nd day, rose to the highest level on the 8th day and remained at this high level until the 21st day. However, the ACO expression in the TDZ (0.93 µM)-treated callus was higher than in the EC especially on the 8th day. Moreover the ACO expression level increased with increasing TDZ concentration during the subcultural/maintenance period of the callus. It is worth noting that comparing the treatment with TDZ alone, the treatment with 0.93 µM TDZ plus 50 µM CoCl2 reduced both of the ACO gene expressions and ACO activity in the treated callus. These results indicate that the effect of TDZ could be counteracted by CoCl2 either on the ACO gene expression level or ACO activity. Thus, a TDZ inhibitory effect on embryogenic competence of alfalfa callus could be mediated by ACO gene expression.


Asunto(s)
Aminoácido Oxidorreductasas/genética , ADN Complementario/genética , Medicago sativa/crecimiento & desarrollo , Medicago sativa/genética , Compuestos de Fenilurea/farmacología , Tiadiazoles/farmacología , Aminoácido Oxidorreductasas/biosíntesis , Aminoácido Oxidorreductasas/metabolismo , Clonación Molecular , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Medicago sativa/efectos de los fármacos , Medicago sativa/metabolismo , Morfogénesis/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Técnicas de Embriogénesis Somática de Plantas/métodos , Semillas/efectos de los fármacos , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo
12.
Plant Physiol Biochem ; 55: 33-42, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22522578

RESUMEN

Polar auxin transport (PAT) plays an important role in the adventitious root formation of mango cotyledon segments, but the molecular mechanism remains unclear. In this study, we cloned a gene encoding an auxin efflux carrier (designated as MiPIN1), and we cloned four genes encoding auxin influx carriers (designated as MiAUX1, MiAUX2, MiAUX3 and MiAUX4). The results of a phylogenetic tree analysis indicated that MiPIN1 and the MiAUXs belong to plant PIN and AUXs/LAXs groups. Quantitative real-time PCR indicated that the expression of MiPIN1 and the MiAUXs was lowest at 0 days but sharply increased on and after day 4. During the root formation in the mango cotyledon segments, the MiPIN1 expression in the distal cut surface (DCS) was always higher than the expression in the proximal cut surface (PCS) whereas the expression of the MiAUXs in the PCS was usually higher than in the DCS. This expression pattern might be result in the PAT from the DCS to the PCS, which is essential for the adventitious root formation in the PCS. Our previous study indicated that a pre-treatment of embryos with indole-3-butyric acid (IBA) significantly promoted adventitious rooting in PCS whereas a pre-treatment with 2,3,5-triiodobenzoic acid (TIBA) completely inhibited this rooting. In this study, however, IBA and TIBA pre-treatments slightly changed the expression of MiPIN1. In contrast, while the MiAUX3 and MiAUX4 expression levels were significantly up-regulated by the IBA pre-treatment, the expression levels were down-regulated by the TIBA pre-treatment. These findings imply that MiAUX3 and MiAUX4 are more sensitive to the IBA and TIBA treatments and that they might play important roles during adventitious root formation in mango cotyledon segments.


Asunto(s)
Cotiledón/genética , Ácidos Indolacéticos/metabolismo , Mangifera/genética , Proteínas de Plantas/genética , Raíces de Plantas/genética , Secuencia de Aminoácidos , Secuencia de Bases , Transporte Biológico , Clonación Molecular , Cotiledón/crecimiento & desarrollo , Cotiledón/metabolismo , ADN Complementario/química , ADN Complementario/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Mangifera/crecimiento & desarrollo , Mangifera/metabolismo , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/clasificación , Proteínas de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA