Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Mol Cell ; 81(1): 166-182.e6, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33238161

RESUMEN

The repeating structural unit of metazoan chromatin is the chromatosome, a nucleosome bound to a linker histone, H1. There are 11 human H1 isoforms with diverse cellular functions, but how they interact with the nucleosome remains elusive. Here, we determined the cryoelectron microscopy (cryo-EM) structures of chromatosomes containing 197 bp DNA and three different human H1 isoforms, respectively. The globular domains of all three H1 isoforms bound to the nucleosome dyad. However, the flanking/linker DNAs displayed substantial distinct dynamic conformations. Nuclear magnetic resonance (NMR) and H1 tail-swapping cryo-EM experiments revealed that the C-terminal tails of the H1 isoforms mainly controlled the flanking DNA orientations. We also observed partial ordering of the core histone H2A C-terminal and H3 N-terminal tails in the chromatosomes. Our results provide insights into the structures and dynamics of the chromatosomes and have implications for the structure and function of chromatin.


Asunto(s)
ADN/química , Histonas/química , Nucleosomas/química , Microscopía por Crioelectrón , ADN/ultraestructura , Humanos , Nucleosomas/ultraestructura , Isoformas de Proteínas/química
2.
Nucleic Acids Res ; 52(4): 1688-1701, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38084929

RESUMEN

Centromeric chromatin plays a crucial role in kinetochore assembly and chromosome segregation. Centromeres are specified through the loading of the histone H3 variant CENP-A by the conserved chaperone Scm3/HJURP. The N-terminus of Scm3/HJURP interacts with CENP-A, while the C-terminus facilitates centromere localization by interacting with the Mis18 holocomplex via a small domain, called the Mis16-binding domain (Mis16-BD) in fission yeast. Fungal Scm3 proteins contain an additional conserved cysteine-rich domain (CYS) of unknown function. Here, we find that CYS binds zinc in vitro and is essential for the localization and function of fission yeast Scm3. Disrupting CYS by deletion or introduction of point mutations within its zinc-binding motif prevents Scm3 centromere localization and compromises kinetochore integrity. Interestingly, CYS alone can localize to the centromere, albeit weakly, but its targeting is greatly enhanced when combined with Mis16-BD. Expressing a truncated protein containing both Mis16-BD and CYS, but lacking the CENP-A binding domain, causes toxicity and is accompanied by considerable chromosome missegregation and kinetochore loss. These effects can be mitigated by mutating the CYS zinc-binding motif. Collectively, our findings establish the essential role of the cysteine-rich domain in fungal Scm3 proteins and provide valuable insights into the mechanism of Scm3 centromere targeting.


Asunto(s)
Proteínas Portadoras , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proteínas Portadoras/genética , Centrómero/genética , Centrómero/metabolismo , Proteína A Centromérica/genética , Proteína A Centromérica/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Cisteína/metabolismo , Cinetocoros/metabolismo , Chaperonas Moleculares/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Zinc/metabolismo
3.
Mol Cell ; 59(4): 628-38, 2015 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-26212454

RESUMEN

Linker histones bind to the nucleosome and regulate the structure of chromatin and gene expression. Despite more than three decades of effort, the structural basis of nucleosome recognition by linker histones remains elusive. Here, we report the crystal structure of the globular domain of chicken linker histone H5 in complex with the nucleosome at 3.5 Å resolution, which is validated using nuclear magnetic resonance spectroscopy. The globular domain sits on the dyad of the nucleosome and interacts with both DNA linkers. Our structure integrates results from mutation analyses and previous cross-linking and fluorescence recovery after photobleach experiments, and it helps resolve the long debate on structural mechanisms of nucleosome recognition by linker histones. The on-dyad binding mode of the H5 globular domain is different from the recently reported off-dyad binding mode of Drosophila linker histone H1. We demonstrate that linker histones with different binding modes could fold chromatin to form distinct higher-order structures.


Asunto(s)
Proteínas de Drosophila/química , Histonas/química , Nucleosomas/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Cristalografía por Rayos X , Drosophila melanogaster , Modelos Moleculares , Datos de Secuencia Molecular , Nucleosomas/fisiología , Unión Proteica
4.
Mol Cell ; 53(3): 498-505, 2014 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-24507717

RESUMEN

Histone variant H2A.Z-containing nucleosomes exist at most eukaryotic promoters and play important roles in gene transcription and genome stability. The multisubunit nucleosome-remodeling enzyme complex SWR1, conserved from yeast to mammals, catalyzes the ATP-dependent replacement of histone H2A in canonical nucleosomes with H2A.Z. How SWR1 catalyzes the replacement reaction is largely unknown. Here, we determined the crystal structure of the N-terminal region (599-627) of the catalytic subunit Swr1, termed Swr1-Z domain, in complex with the H2A.Z-H2B dimer at 1.78 Å resolution. The Swr1-Z domain forms a 310 helix and an irregular chain. A conserved LxxLF motif in the Swr1-Z 310 helix specifically recognizes the αC helix of H2A.Z. Our results show that the Swr1-Z domain can deliver the H2A.Z-H2B dimer to the DNA-(H3-H4)2 tetrasome to form the nucleosome by a histone chaperone mechanism.


Asunto(s)
Adenosina Trifosfatasas/química , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Adenosina Trifosfatasas/fisiología , Secuencia de Aminoácidos , Ensamble y Desensamble de Cromatina/genética , Clonación Molecular , Cristalografía por Rayos X , Dimerización , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/fisiología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología , Difracción de Rayos X
5.
Biochemistry ; 57(48): 6645-6648, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30430826

RESUMEN

It was recently reported that human linker histone H1.0 and its chaperone prothymosin-α (ProTα) form an extremely disordered 1:1 complex with an ultrahigh affinity (equilibrium dissociation constant KD of ∼2 × 10-12 M) measured using a single-molecule Förster resonance energy transfer method. It was hypothesized that the ultrahigh affinity and extreme disorder may be required for the chaperone function of ProTα, in which it displaces the linker histone from condensed chromatin. Here, we measure the binding affinity for the ProTα-H1.0 complex using isothermal titration calorimetry and report a KD value of (4.6 ± 0.5) × 10-7 M. In addition, we show that ProTα facilitates the formation of the H1.0-nucleosome complex in vitro. The results of our study contrast with those of the previous report and provide new insights into the chaperone function of ProTα. Possible causes for the observed discrepancy in binding affinity are discussed.


Asunto(s)
Histonas/metabolismo , Precursores de Proteínas/metabolismo , Timosina/análogos & derivados , Secuencia de Aminoácidos , Calorimetría , Transferencia Resonante de Energía de Fluorescencia , Histonas/química , Histonas/genética , Humanos , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Cinética , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Nucleosomas/química , Nucleosomas/metabolismo , Unión Proteica , Precursores de Proteínas/química , Precursores de Proteínas/genética , Timosina/química , Timosina/genética , Timosina/metabolismo
6.
Nature ; 472(7342): 234-7, 2011 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-21412236

RESUMEN

The centromere is a unique chromosomal locus that ensures accurate segregation of chromosomes during cell division by directing the assembly of a multiprotein complex, the kinetochore. The centromere is marked by a conserved variant of conventional histone H3 termed CenH3 or CENP-A (ref. 2). A conserved motif of CenH3, the CATD, defined by loop 1 and helix 2 of the histone fold, is necessary and sufficient for specifying centromere functions of CenH3 (refs 3, 4). The structural basis of this specification is of particular interest. Yeast Scm3 and human HJURP are conserved non-histone proteins that interact physically with the (CenH3-H4)(2) heterotetramer and are required for the deposition of CenH3 at centromeres in vivo. Here we have elucidated the structural basis for recognition of budding yeast (Saccharomyces cerevisiae) CenH3 (called Cse4) by Scm3. We solved the structure of the Cse4-binding domain (CBD) of Scm3 in complex with Cse4 and H4 in a single chain model. An α-helix and an irregular loop at the conserved amino terminus and a shorter α-helix at the carboxy terminus of Scm3(CBD) wraps around the Cse4-H4 dimer. Four Cse4-specific residues in the N-terminal region of helix 2 are sufficient for specific recognition by conserved and functionally important residues in the N-terminal helix of Scm3 through formation of a hydrophobic cluster. Scm3(CBD) induces major conformational changes and sterically occludes DNA-binding sites in the structure of Cse4 and H4. These findings have implications for the assembly and architecture of the centromeric nucleosome.


Asunto(s)
Centrómero/química , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Autoantígenos/química , Autoantígenos/metabolismo , Sitios de Unión , Centrómero/metabolismo , Proteína A Centromérica , Secuencia Conservada , ADN/química , ADN/metabolismo , Histonas/química , Histonas/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Nucleosomas/química , Nucleosomas/metabolismo , Unión Proteica , Conformación Proteica , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo
7.
Proc Natl Acad Sci U S A ; 110(48): 19390-5, 2013 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-24218562

RESUMEN

Linker H1 histones facilitate formation of higher-order chromatin structures and play important roles in various cell functions. Despite several decades of effort, the structural basis of how H1 interacts with the nucleosome remains elusive. Here, we investigated Drosophila H1 in complex with the nucleosome, using solution nuclear magnetic resonance spectroscopy and other biophysical methods. We found that the globular domain of H1 bridges the nucleosome core and one 10-base pair linker DNA asymmetrically, with its α3 helix facing the nucleosomal DNA near the dyad axis. Two short regions in the C-terminal tail of H1 and the C-terminal tail of one of the two H2A histones are also involved in the formation of the H1-nucleosome complex. Our results lead to a residue-specific structural model for the globular domain of the Drosophila H1 in complex with the nucleosome, which is different from all previous experiment-based models and has implications for chromatin dynamics in vivo.


Asunto(s)
Histonas/química , Sustancias Macromoleculares/química , Modelos Moleculares , Conformación Molecular , Nucleosomas/química , Secuencia de Aminoácidos , Calorimetría , Histonas/genética , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Unión Proteica
8.
Biochemistry ; 54(11): 2001-10, 2015 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-25753752

RESUMEN

The p53 tumor suppressor is a critical mediator of the cellular response to stress. The N-terminal transactivation domain of p53 makes protein interactions that promote its function as a transcription factor. Among those cofactors is the histone acetyltransferase p300, which both stabilizes p53 and promotes local chromatin unwinding. Here, we report the nuclear magnetic resonance solution structure of the Taz2 domain of p300 bound to the second transactivation subdomain of p53. In the complex, p53 forms an α-helix between residues 47 and 55 that interacts with the α1-α2-α3 face of Taz2. Mutational analysis indicated several residues in both p53 and Taz2 that are critical for stabilizing the interaction. Finally, further characterization of the complex by isothermal titration calorimetry revealed that complex formation is pH-dependent and releases a bound chloride ion. This study highlights differences in the structures of complexes formed by the two transactivation subdomains of p53 that may be broadly observed and play critical roles in p53 transcriptional activity.


Asunto(s)
Proteína p300 Asociada a E1A/metabolismo , Histona Acetiltransferasas/metabolismo , Modelos Moleculares , Proteína p53 Supresora de Tumor/metabolismo , Sustitución de Aminoácidos , Rastreo Diferencial de Calorimetría , Proteína p300 Asociada a E1A/química , Proteína p300 Asociada a E1A/genética , Histona Acetiltransferasas/química , Histona Acetiltransferasas/genética , Humanos , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Cinética , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Resonancia Magnética Nuclear Biomolecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/genética
9.
Proc Natl Acad Sci U S A ; 108(30): 12283-8, 2011 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-21730181

RESUMEN

Chromatin structure and function are regulated by numerous proteins through specific binding to nucleosomes. The structural basis of many of these interactions is unknown, as in the case of the high mobility group nucleosomal (HMGN) protein family that regulates various chromatin functions, including transcription. Here, we report the architecture of the HMGN2-nucleosome complex determined by a combination of methyl-transverse relaxation optimized nuclear magnetic resonance spectroscopy (methyl-TROSY) and mutational analysis. We found that HMGN2 binds to both the acidic patch in the H2A-H2B dimer and to nucleosomal DNA near the entry/exit point, "stapling" the histone core and the DNA. These results provide insight into how HMGNs regulate chromatin structure through interfering with the binding of linker histone H1 to the nucleosome as well as a structural basis of how phosphorylation induces dissociation of HMGNs from chromatin during mitosis. Importantly, our approach is generally applicable to the study of nucleosome-binding interactions in chromatin.


Asunto(s)
Proteína HMGN2/química , Nucleosomas/química , Secuencia de Aminoácidos , Sitios de Unión , ADN/química , ADN/metabolismo , Proteína HMGN2/genética , Proteína HMGN2/metabolismo , Histonas/química , Histonas/genética , Histonas/metabolismo , Humanos , Técnicas In Vitro , Cinética , Metilación , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Resonancia Magnética Nuclear Biomolecular , Nucleosomas/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido
10.
Structure ; 17(2): 202-10, 2009 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-19217391

RESUMEN

Coactivators CREB-binding protein and p300 play important roles in mediating the transcriptional activity of p53. Until now, however, no detailed structural information has been available on how any of the domains of p300 interact with p53. Here, we report the NMR structure of the complex of the Taz2 (C/H3) domain of p300 and the N-terminal transactivation domain of p53. In the complex, p53 forms a short alpha helix and interacts with the Taz2 domain through an extended surface. Mutational analyses demonstrate the importance of hydrophobic residues for complex stabilization. Additionally, they suggest that the increased affinity of Taz2 for p53(1-39) phosphorylated at Thr(18) is due in part to electrostatic interactions of the phosphate with neighboring arginine residues in Taz2. Thermodynamic experiments revealed the importance of hydrophobic interactions in the complex of Taz2 with p53 phosphorylated at Ser(15) and Thr(18).


Asunto(s)
Dominios y Motivos de Interacción de Proteínas , Proteínas Quinasas/metabolismo , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/metabolismo , Factores de Transcripción p300-CBP/química , Factores de Transcripción p300-CBP/metabolismo , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Fosforilación/fisiología , Unión Proteica , Mapeo de Interacción de Proteínas , Proteínas Quinasas/fisiología , Estructura Cuaternaria de Proteína , Serina/química , Serina/metabolismo , Termodinámica , Treonina/química , Treonina/metabolismo
12.
J Mol Biol ; 365(3): 870-80, 2007 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-17109883

RESUMEN

Folding intermediates have been detected and characterized for many proteins. However, their structures at atomic resolution have only been determined for two small single domain proteins: Rd-apocytochrome b(562) and engrailed homeo domain. T4 lysozyme has two easily distinguishable but energetically coupled domains: the N and C-terminal domains. An early native-state hydrogen exchange experiment identified an intermediate with the C-terminal domain folded and the N-terminal domain unfolded. We have used a native-state hydrogen exchange-directed protein engineering approach to populate this intermediate and demonstrated that it is on the folding pathway and exists after the rate-limiting step. Here, we determined its high-resolution structure and the backbone dynamics by multi-dimensional NMR methods. We also characterized the folding behavior of the intermediate using stopped-flow fluorescence, protein engineering, and native-state hydrogen exchange. Unlike the folding intermediates of the two single-domain proteins, which have many non-native side-chain interactions, the structure of the hidden folding intermediate of T4 lysozyme is largely native-like. It folds like many small single domain proteins. These results have implications for understanding the folding mechanism and evolution of multi-domain proteins.


Asunto(s)
Bacteriófago T4/enzimología , Muramidasa/química , Muramidasa/metabolismo , Pliegue de Proteína , Secuencia de Aminoácidos , Evolución Molecular , Hidrógeno , Concentración de Iones de Hidrógeno , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Resonancia Magnética Nuclear Biomolecular , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Temperatura , Termodinámica
13.
J Mol Biol ; 365(3): 881-91, 2007 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-17097105

RESUMEN

T4 lysozyme has two easily distinguishable but energetically coupled domains: the N and C-terminal domains. In earlier studies, an amide hydrogen/deuterium exchange pulse-labeling experiment detected a stable submillisecond intermediate that accumulates before the rate-limiting transition state. It involves the formation of structures in both the N and C-terminal regions. However, a native-state hydrogen exchange experiment subsequently detected an equilibrium intermediate that only involves the formation of the C-terminal domain. Here, using stopped-flow circular dichroism and fluorescence, amide hydrogen exchange-folding competition, and protein engineering methods, we re-examined the folding pathway of T4-lysozyme. We found no evidence for the existence of a stable folding intermediate before the rate-limiting transition state at neutral pH. In addition, using native-state hydrogen exchange-directed protein engineering, we created a mimic of the equilibrium intermediate. We found that the intermediate mimic folds with the same rate as the wild-type protein, suggesting that the equilibrium intermediate is an on-pathway intermediate that exists after the rate-limiting transition state.


Asunto(s)
Bacteriófago T4/enzimología , Muramidasa/química , Muramidasa/metabolismo , Pliegue de Proteína , Dicroismo Circular , Fluorescencia , Hidrógeno , Concentración de Iones de Hidrógeno , Cinética , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Ingeniería de Proteínas , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Temperatura , Factores de Tiempo
14.
Science ; 359(6373): 339-343, 2018 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-29269420

RESUMEN

Accurate chromosome segregation requires the proper assembly of kinetochore proteins. A key step in this process is the recognition of the histone H3 variant CENP-A in the centromeric nucleosome by the kinetochore protein CENP-N. We report cryo-electron microscopy (cryo-EM), biophysical, biochemical, and cell biological studies of the interaction between the CENP-A nucleosome and CENP-N. We show that human CENP-N confers binding specificity through interactions with the L1 loop of CENP-A, stabilized by electrostatic interactions with the nucleosomal DNA. Mutational analyses demonstrate analogous interactions in Xenopus, which are further supported by residue-swapping experiments involving the L1 loop of CENP-A. Our results are consistent with the coevolution of CENP-N and CENP-A and establish the structural basis for recognition of the CENP-A nucleosome to enable kinetochore assembly and centromeric chromatin organization.


Asunto(s)
Proteína A Centromérica/metabolismo , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/química , Nucleosomas/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/ultraestructura , Microscopía por Crioelectrón , Análisis Mutacional de ADN , Humanos , Cinetocoros/metabolismo , Estructura Secundaria de Proteína , Xenopus
15.
J Mol Biol ; 430(18 Pt B): 3093-3110, 2018 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-29959925

RESUMEN

It has long been suggested that chromatin may form a fiber with a diameter of ~30 nm that suppresses transcription. Despite nearly four decades of study, the structural nature of the 30-nm chromatin fiber and conclusive evidence of its existence in vivo remain elusive. The key support for the existence of specific 30-nm chromatin fiber structures is based on the determination of the structures of reconstituted nucleosome arrays using X-ray crystallography and single-particle cryo-electron microscopy coupled with glutaraldehyde chemical cross-linking. Here we report the characterization of these nucleosome arrays in solution using analytical ultracentrifugation, NMR, and small-angle X-ray scattering. We found that the physical properties of these nucleosome arrays in solution are not consistent with formation of just a few discrete structures of nucleosome arrays. In addition, we obtained a crystal of the nucleosome in complex with the globular domain of linker histone H5 that shows a new form of nucleosome packing and suggests a plausible alternative compact conformation for nucleosome arrays. Taken together, our results challenge the key evidence for the existence of a limited number of structures of reconstituted nucleosome arrays in solution by revealing that the reconstituted nucleosome arrays are actually best described as an ensemble of various conformations with a zigzagged arrangement of nucleosomes. Our finding has implications for understanding the structure and function of chromatin in vivo.


Asunto(s)
Modelos Moleculares , Nucleosomas/química , Nucleosomas/metabolismo , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Cristalografía por Rayos X , Disulfuros/química , Conformación Molecular , Soluciones , Relación Estructura-Actividad
16.
Org Lett ; 9(12): 2381-3, 2007 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-17506576

RESUMEN

Peptoids are a non-natural class of oligomers that are composed of repeating N-substituted glycine units and are capable of folding into helices that mimic peptide structure and function. In this letter, we report the concise synthesis of a 1,5-substituted triazole amino acid (Tzl) and its subsequent incorporation into a short peptoid. The Tzl amino acid was shown to induce turn formation in aqueous solution, thus expanding the structural repertoire available to peptoid chemists.


Asunto(s)
Peptoides , Triazoles/química , Modelos Moleculares , Estructura Molecular , Peptoides/análogos & derivados , Peptoides/síntesis química , Peptoides/química , Estructura Secundaria de Proteína , Soluciones/química , Estereoisomerismo , Agua/química
17.
Methods Mol Biol ; 350: 69-81, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-16957318

RESUMEN

Structural characterization of folding intermediates has been one of the important steps toward understanding the mechanism of protein folding. However, it has been very difficult to obtain high-resolution structures of folding intermediates. Such results have become available only very recently. Here, we review a procedure that uses the native-state amide hydrogen exchange-directed protein engineering method to populate partially unfolded intermediates and multidimensional NMR to solve the high-resolution structures of the intermediates.


Asunto(s)
Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular/métodos , Conformación Proteica , Ingeniería de Proteínas/métodos , Pliegue de Proteína , Proteínas/química
18.
Proteins ; 65(2): 259-65, 2006 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-16909417

RESUMEN

The focal adhesion target (FAT) domain of focal adhesion kinase has a four-helix bundle structure. Based on a hydrogen exchange-constrained computer simulation study and some indirect experimental results, it has been suggested that a partially unfolded state of the FAT domain with the N-terminal helix unfolded plays an important role in its biological function. Here, using a native-state hydrogen exchange method, we directly detected an intermediate with the N-terminal helix unfolded in a mutant (Y925E) of the FAT domain. In addition, kinetic folding studies on the FAT domain suggest that this intermediate exists on the native side of the rate-limiting transition state for folding. These results provide more direct evidence of the existence of the proposed intermediate and help to understand the folding mechanism of small single domain proteins.


Asunto(s)
Adhesiones Focales/metabolismo , Pliegue de Proteína , Dicroismo Circular , Proteína-Tirosina Quinasas de Adhesión Focal/química , Proteína-Tirosina Quinasas de Adhesión Focal/genética , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Adhesiones Focales/química , Hidrógeno/química , Hidrógeno/metabolismo , Cinética , Modelos Moleculares , Mutación/genética , Unión Proteica , Desnaturalización Proteica , Estructura Cuaternaria de Proteína , Temperatura , Termodinámica
19.
J Mol Biol ; 346(1): 345-53, 2005 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-15663949

RESUMEN

The folding pathway of the third domain of PDZ from the synaptic protein PSD-95 was characterized using kinetic and equilibrium methods by monitoring the fluorescence signal from a Trp residue that is incorporated at a near-surface position. Kinetic folding of this domain showed multiple exponential phases, whereas unfolding showed a single exponential phase. The slow kinetic phases were attributed to isomerization of proline residues, since there are five proline residues in this domain. We found that the logarithms of the rate constants for the fast phase of folding and unfolding are linearly dependent on the concentrations of denaturant. The unfolding free energy derived from these rate constants at zero denaturant was close to the value measured using the equilibrium method, suggesting the absence of detectable sub-millisecond folding intermediates. However, native-state hydrogen exchange experiments detected a partially unfolded intermediate under native conditions. It was further confirmed by a protein engineering study. These data suggest that a hidden intermediate exists after the rate-limiting step in the folding of the third domain of PDZ.


Asunto(s)
Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Pliegue de Proteína , Hidrógeno/metabolismo , Cinética , Modelos Moleculares , Mutación/genética , Proteínas del Tejido Nervioso/genética , Fenilalanina/genética , Fenilalanina/metabolismo , Desnaturalización Proteica , Ingeniería de Proteínas , Estructura Terciaria de Proteína , Análisis Espectral , Termodinámica , Triptófano/química , Triptófano/metabolismo
20.
J Mol Biol ; 428(20): 3948-3959, 2016 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-27558112

RESUMEN

Linker histones bind to the nucleosome and regulate the structure and function of chromatin. We have previously shown that the globular domains of chicken H5 and Drosophila H1 linker histones bind to the nucleosome with on- or off-dyad modes, respectively. To explore the determinant for the distinct binding modes, we investigated the binding of a mutant globular domain of H5 to the nucleosome. This mutant, termed GH5_pMut, includes substitutions of five globular domain residues of H5 with the corresponding residues in the globular domain of Drosophila H1. The residues at these five positions play important roles in nucleosome binding by either H5 or Drosophila H1. NMR and spin-labeling experiments showed that GH5_pMut bound to the nucleosome off the dyad. We further found that the nucleosome array condensed by either the GH5_pMut or the globular domain of Drosophila H1 displayed a similar sedimentation coefficient, whereas the same nucleosome array condensed by the wild-type globular domain of H5 showed a much larger sedimentation coefficient. Moreover, NMR and spin-labeling results from the study of the nucleosome in complex with the full-length human linker histone H1.0, whose globular domain shares high sequence conservation with the corresponding globular domain of H5, are consistent with an on-dyad binding mode. Taken together, our results suggest that a small number of residues in the globular domain of a linker histone can control its binding location on the nucleosome and higher-order chromatin structure.


Asunto(s)
Histonas/metabolismo , Proteínas Mutantes/metabolismo , Nucleosomas/metabolismo , Sustitución de Aminoácidos , Animales , Pollos , Histonas/genética , Humanos , Proteínas Mutantes/genética , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA