Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Zhongguo Zhong Yao Za Zhi ; 49(1): 175-184, 2024 Jan.
Artículo en Zh | MEDLINE | ID: mdl-38403350

RESUMEN

The occurrence and development of tumors are associated with the cell energy metabolism. Inhibiting energy metabolism of lung cancer cells is an important strategy to overcome drug resistance. Based on the cellular energy metabolism pathway, this study observed the effect of combination of shikonin(SKN) and gefitinib(GFB) on the drug resistance in non-small cell lung cancer and explored the underlying mechanism. The human non-small cell lung cancer line HCC827/GR resistant to gefitinib was used as the cell model in vitro. The CCK-8 assay and flow cytometry were employed to investigate the cell viability and apoptosis, respectively. The high performance liquid chromatography was employed to measure the intracellular accumulation of GFB. A Seahorse XFe96 Analyzer was used to detect the changes of cellular energy metabolism. Western blot was employed to determine the expression of the proteins involved in the drug resistance. The tumor-bearing nude mouse model was used to verify the efficacy of SKN+GFB in overcoming drug resistance in vivo. The results showed that SKN+GFB significantly reduced the IC_(50) of GFB on HCC827/GR cells, with the combination index of 0.628, indicating that the combination of the two drugs had a synergistic effect and promoted cell apoptosis. SKN increased the intracellular accumulation of GFB. SKN+GFB lowered the oxygen consumption rate(OCR) and glycolytic proton efflux rate(GlycoPER) in cell energy metabolism, and down-regulated the overexpression of PKM2, p-EGFR, P-gp, and HIF-1α in drug resistance. The results of reversing drug resistance test in vivo showed that GFB or SKN alone had no significant antitumor effect, while the combination at different doses induced the apoptosis of the tumor tissue and inhibited the expression of PKM2 and P-gp, demonstrating a significant antitumor effect. Moreover, the tumor inhibition rate in the high-dose combination group reached 64.01%. In summary, SKN+GFB may interfere with the energy metabolism to limit the function of HCC827/GR cells, thus reversing the GFB resistance in non-small cell lung cancer.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Naftoquinonas , Animales , Ratones , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Gefitinib/farmacología , Gefitinib/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Quinazolinas/farmacología , Resistencia a Antineoplásicos , Proliferación Celular , Línea Celular Tumoral , Apoptosis
2.
Zhongguo Zhong Yao Za Zhi ; 49(13): 3515-3525, 2024 Jul.
Artículo en Zh | MEDLINE | ID: mdl-39041123

RESUMEN

Regulating the process of epithelial-mesenchymal transition(EMT) is an essential strategy to inhibit tumor growth and metastasis. This study is based on the EMT process of retinoblastoma and constructs quercetin(QUE) and doxorubicin(DOX) co-loaded liposome(QD Lipo) to investigate the therapeutic effect and mechanisms of combined QUE and DOX treatment on retinoblastoma. Single-factor experiments were conducted to optimize the prescription process of QD Lipo. Eventually, spherical particles with a diameter of(108.87±1.93) nm, a PDI of 0.13±0.02, and a Zeta potential of(-34.83±1.92) mV were obtained. The encapsulation rates of QUE and DOX were 96.20%±4.40% and 91.17%±4.41%, respectively. Y79 human retinoblastoma cells were used as an in vitro cellular model, and confocal microscopy demonstrated that QD Lipo could enhance Y79 uptake efficiency. The CCK-8 assay confirmed that the optimal combination therapy effect of QUE and DOX occurred at a mass ratio of 1∶1 to 1∶2. Flow cytometry showed that QD Lipo enhanced the induction of apoptosis in Y79 cells. Western blot analysis revealed that QD Lipo significantly reduced the expression of EMT pathway-related proteins vimentin and α-SMA. Fluorescence assays detected a significant decrease in ROS levels in Y79 cells after treatment with QD. These results indicated that liposomal co-delivery of QUE and DOX can enhance drug delivery efficiency to retinoblastoma cells, inhibit the EMT process in retinoblastoma by downregulating ROS levels, and enhance the cytotoxicity of DOX against retinoblastoma.


Asunto(s)
Doxorrubicina , Transición Epitelial-Mesenquimal , Liposomas , Quercetina , Retinoblastoma , Quercetina/administración & dosificación , Quercetina/farmacología , Quercetina/química , Doxorrubicina/farmacología , Doxorrubicina/química , Doxorrubicina/administración & dosificación , Retinoblastoma/tratamiento farmacológico , Humanos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Liposomas/química , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Especies Reactivas de Oxígeno/metabolismo
3.
J Nanobiotechnology ; 21(1): 206, 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37403048

RESUMEN

Enterocyte uptake with high binding efficiency and minor endogenous interference remains a challenge in oral nanocarrier delivery. Enterocyte membrane-biomimetic lipids may universally cooperate with endogenous phosphatidyl choline via a biorthogonal group. In this study, we developed a sophorolipid-associated membrane-biomimetic choline phosphate-poly(lactic-co-glycolic) acid hybrid nanoparticle (SDPN). Aided by physical stability in the gastrointestinal tract and rapid mucus diffusion provided by association with sophorolipid, these nanoparticles show improved endocytosis, driven by dipalmitoyl choline phosphate-phosphatidyl choline interaction as well as its optimized membrane fluidity and rigidity. Luteolin- and silibinin-co-loaded with SDPN alleviated breast cancer metastasis in 4T1 tumor-bearing mice by regulating the conversion of tumor-associated M2 macrophages into the M1 phenotype and reducing the proportion of the M2-phenotype through co-action on STAT3 and HIF-1α. In addition, SDPN reduces angiogenesis and regulates the matrix barrier in the tumor microenvironment. In conclusion, this membrane-biomimetic strategy is promising for improving the enterocyte uptake of oral SDPN and shows potential to alleviate breast cancer metastasis.


Asunto(s)
Nanopartículas , Neoplasias , Ratones , Animales , Macrófagos Asociados a Tumores , Biomimética , Fosforilcolina , Línea Celular Tumoral , Microambiente Tumoral
4.
Chem Soc Rev ; 51(6): 2121-2144, 2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35188506

RESUMEN

Leukemia is a hematological malignancy associated with the uncontrolled proliferation of mutant progenitors, suppressing the production of normal blood cells. Current treatments, including chemotherapy, radiotherapy, and immunotherapy, still lead to unsatisfactory results with a 5 year survival rate of only 30-50%. The poor prognosis is related to both disease relapse and treatment-associated toxicity. Delivery strategies can improve the in vivo pharmacokinetics of drugs, navigating the therapeutics to target cells or the tumor microenvironment and reversing drug resistance, which maximizes tumor elimination and alleviates systematic adverse effects. This review discusses available FDA-approved anti-leukemia drugs and therapies with a focus on the advances in the development of anti-leukemia drug delivery systems. Additionally, challenges in clinical translation of the delivery strategies and future research opportunities in leukemia treatment are also included.


Asunto(s)
Leucemia , Neoplasias , Sistemas de Liberación de Medicamentos/métodos , Humanos , Inmunoterapia/métodos , Leucemia/tratamiento farmacológico , Microambiente Tumoral
5.
Zhongguo Zhong Yao Za Zhi ; 48(6): 1642-1651, 2023 Mar.
Artículo en Zh | MEDLINE | ID: mdl-37005852

RESUMEN

The UPLC-MS/MS was established for the determination of acetyl-11-keto-beta-boswellic acid(AKBA) and ß-boswellic acid(ß-BA), the main active components of Olibanum and Myrrha extracts in Xihuang Formula, in rat plasma and urine. The effects of compatibility on the pharmacokinetic behaviors of AKBA and ß-BA in rats were investigated, and the differences in pharmacokinetic behaviors between healthy rats and rats with precancerous lesions of breast cancer were compared. The results showed that compared with RM-NH and RM-SH groups, the AUC_(0-t) and AUC_(0-∞) of ß-BA increased(P<0.05 or P<0.01), T_(max) decreased(P<0.05 or P<0.01), and C_(max) increased(P<0.01) after compatibility. The trends of AKBA and ß-BA were the same. Compared with RM-SH group, the T_(max) decreased(P<0.05), C_(max) increased(P<0.01), and the absorption rate increased in the normal group of Xihuang Formula. The results of urinary excretion showed that there was a decreasing trend in the urinary excretion rate and total urinary excretion of ß-BA and AKBA after compatibility, but there was no statistical difference. Compared with normal group of Xihuang Formula, the AUC_(0-t) and AUC_(0-∞) of ß-BA increased(P<0.05), T_(max) increased(P<0.05), and the clearance rate decreased in the breast precancerous lesion group. AUC_(0-t) and AUC_(0-∞) of AKBA showed an increasing trend, the in vivo retention time was prolonged, and the clearance rate was reduced, but there was no significant difference compared with the normal group. The cumulative urinary excretion and urinary excretion rate of ß-BA and AKBA decreased under pathological conditions, indicating that pathological conditions could affect the in vivo process of ß-BA and AKBA, and reduce their excretion in the form of prototype drugs, showing different pharmacokine-tic characteristics from normal physiological conditions. In this study, UPLC-MS/MS analysis method was established, which was sui-table for in vivo pharmacokinetic analysis of ß-BA and AKBA. This study laid a foundation for the development of new dosage forms of Xihuang Formula.


Asunto(s)
Medicamentos Herbarios Chinos , Lesiones Precancerosas , Triterpenos , Ratas , Animales , Cromatografía Liquida , Espectrometría de Masas en Tándem , Triterpenos/farmacología
6.
Zhongguo Zhong Yao Za Zhi ; 48(13): 3546-3555, 2023 Jul.
Artículo en Zh | MEDLINE | ID: mdl-37474988

RESUMEN

The purpose of this study was to explore the effect and mechanism of Xihuang Pills on rats with precancerous lesions of the breast. Of 48 healthy female rats, 8 were randomly selected as blank group, and the other 40 were treated with 7,12-dimethylbenzanthracene(DMBA) combined with estrogen and progestin to establish a model of precancerous lesions of the breast. The successfully modeled rats were randomly divided into a model group, a tamoxifen group(1.8 mg·kg~(-1)·d~(-1)), a Xihuang Pills low-dose group(0.3 g·kg~(-1)·d~(-1)), a medium-dose group(0.6 g·kg~(-1)·d~(-1)) and a high-dose group(1.2 g·kg~(-1)·d~(-1)). After 30 days of admi-nistration, the histopathological changes of viscera and breast were observed by haematoxylin and eosin(HE) staining, and the visceral index was calculated. Enzyme linked immunosorbent assay(ELISA) was used to detect the contents of estradiol(E_2) and progesterone(P) in serum. The protein expressions of vascular endothelial growth factor(VEGF) and fibroblast growth factor 2(FGF2) were detected by immunohistochemistry. The protein expressions of VEGF, vascular endothelial growth factor receptor 2(VEGFR2), phosphorylated-vascular endothelial growth factor receptor 2(p-VEGFR2), B-cell lymphoma-2(Bcl-2), and Bcl-2 associated X protein(Bax) were detected by Western blot and the mRNA expressions of VEGF, FGF2, CXC-chemokine receptor 4(CXCR4), cysteine aspartic acid-specific protease(caspase-3), and stromal cell-derived factor 1(SDF-1) were detected by real-time polymerase chain reaction(RT-PCR). HE staining revealed that the model group had some liver and kidney damages and severe hyperplastic mammary tissue, while the Xihuang Pills high-dose group had mild hyperplasia. Compared with the model group, the Xihuang Pills groups had lo-wer ovarian coefficient(P<0.05 or P<0.01) and Xihuang Pills high-dose group had lower uterine coefficient(P<0.01). ELISA results showed that compared with the model group, expressions of E_2 and P in Xihuang Pills high-dose group were significantly decreased(P<0.05 or P<0.01). Immunohistochemistry, Western blot and RT-PCR indicated that compared with the conditions in the model group, the protein and mRNA expressions of VEGF and FGF2 in the Xihuang Pills groups were down-regulated(P<0.05 or P<0.01), and the protein expression of Bcl-2 was lowered(P<0.01); there was a decrease in the protein expressions of VEGFR2 and p-VEGFR2(P<0.01), a down-regulation in the mRNA expressions of CXCR4 and SDF-1(P<0.01), while an increase in the mRNA expression of caspase-3(P<0.01) in both Xihuang Pills medium-dose and high-dose groups; the protein expression of Bax in Xihuang Pills high-dose group was increased(P<0.01). The above results indicated that Xihuang Pills can effectively intervene in precance-rous lesions of the breast, and the mechanism may be related to the regulation of E_2 and P secretion as well as the inhibition of angiogenesis and chemokine receptor expression, thus controlling the occurrence of precancerous lesions of the breast in rats.


Asunto(s)
Lesiones Precancerosas , Factor A de Crecimiento Endotelial Vascular , Ratas , Femenino , Animales , Ratas Sprague-Dawley , Proteína X Asociada a bcl-2 , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Caspasa 3 , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Factor 2 de Crecimiento de Fibroblastos , Proteínas Proto-Oncogénicas c-bcl-2 , 9,10-Dimetil-1,2-benzantraceno/toxicidad , Hiperplasia , Receptores de Quimiocina , ARN Mensajero
7.
Zhongguo Zhong Yao Za Zhi ; 48(9): 2419-2425, 2023 May.
Artículo en Zh | MEDLINE | ID: mdl-37282871

RESUMEN

This study combined the herbal pair Platycodonis Radix-Curcumae Rhizoma(PR-CR) possessing an inhibitory effect on tumor cell proliferation and metastasis with the active component of traditional Chinese medicine(TCM) silibinin-loaded nanoparticles(NPs) with a regulatory effect on tumor microenvironment based on the joint effect on tumor cells and tumor microenvironment to inhi-bit cell metastasis. The effects of PR-CR on the cellular uptake of NPs and in vitro inhibition against breast cancer proliferation and metastasis were investigated to provide an experimental basis for improving nanoparticle absorption and enhancing therapeutic effects. Silibinin-loaded lipid-polymer nanoparticles(LPNs) were prepared by the nanoprecipitation method and characterized by transmission electron microscopy. The NPs were spherical or quasi-spherical in shape with obvious core-shell structure. The mean particle size was 107.4 nm, Zeta potential was-27.53 mV. The cellular uptake assay was performed by in vitro Caco-2/E12 coculture cell model and confocal laser scanning microscopy(CLSM), and the results indicated that PR-CR could promote the uptake of NPs. Further, in situ intestinal absorption assay by the CLSM vertical scanning approach showed that PR-CR could promote the absorption of NPs in the enterocytes of mice. The inhibitory effect of NPs on the proliferation and migration of 4T1 cells was analyzed using 4T1 breast cancer cells and co-cultured 4T1/WML2 cells, respectively. The results of the CCK8 assay showed that PR-CR-containing NPs could enhance the inhibition against the proliferation of 4T1 breast cancer cells. The wound healing assay indicated that PR-CR-containing NPs enhanced the inhibition against the migration of 4T1 breast cancer cells. This study enriches the research on oral absorption of TCM NPs and also provides a new idea for utilizing the advantages of TCM to inhibit breast cancer metastasis.


Asunto(s)
Neoplasias de la Mama , Nanopartículas , Humanos , Ratones , Animales , Femenino , Silibina/uso terapéutico , Células CACO-2 , Polímeros/química , Nanopartículas/química , Línea Celular Tumoral , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Microambiente Tumoral , Melanoma Cutáneo Maligno
8.
Mol Pharm ; 19(8): 2840-2853, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35850109

RESUMEN

Some cancer cell membrane (CCM)-derived nanovesicles show strong homing effects and are used for targeted cancer therapy. By co-constructing the B16F10 cell membrane with a PEGylated phospholipid membrane, a new nanocarrier with a composite nanocrown structure was developed, which can evade immune recognition and actively target homologous melanoma. The nanocrowns have an encapsulation efficiency of more than 90% for paclitaxel and showed no significant difference (p > 0.05) from the PEGylated phospholipid membrane vesicles. Compared with the hyaluronic acid-modified PEGylated phospholipid membrane vesicles, the biomimetic nanocrowns enhanced the escape of nanovesicles from reticuloendothelial cells in vitro and extended the circulation time in vivo; moreover, the nanocrowns showed superior melanoma-targeted drug delivery capability and improved anticancer effects of paclitaxel as demonstrated by the inhibition of B16F10 cell proliferation and induction of apoptosis by interfering with microtubule formation. In contrast, the modification of hyaluronic acid did not increase the targeting capacity or antitumor effects of the nanocrowns, confirming that the superior targeting capacity was mediated by the exposed homologous CCMs rather than by hyaluronic acid. Our results demonstrate the potential of using biomimetic nanocrowns for active melanoma-targeted therapy.


Asunto(s)
Melanoma , Nanopartículas , Línea Celular Tumoral , Membrana Celular , Humanos , Ácido Hialurónico/química , Melanoma/tratamiento farmacológico , Nanopartículas/química , Paclitaxel/uso terapéutico , Fosfolípidos , Polietilenglicoles
9.
Genomics ; 113(6): 3644-3652, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34400241

RESUMEN

OBJECTIVE: Some studies have implied the damaging effect of sevoflurane (sevo) on cognitive function in Alzheimer's disease (AD). This research was conducted to explore the effect of microRNA (miR)-132/forkhead-box A1 (FOXA1) axis on cognitive ability of sevo-treated AD rats. METHODS: The condensed-matter Aß1-40-induced AD rats were injected with miR-132- or FOXA1-related plasmids, followed by inhalation with 3% sevo. Then, the cognitive functions of AD rats were assessed. miR-132 and FOXA1 levels in hippocampal tissues of AD rats, and their interaction were identified. RESULTS: miR-132 expression was reduced and FOXA1 mRNA and protein levels were elevated in AD rats. miR-132 targeted FOXA1. Sevo treatment impaired cognitive function in AD rats. Elevated miR-132 or inhibited FOXA1 attenuated sevo-mediated injury in AD rats. Overexpressed FOXA1 rescued the effect of elevated miR-132 in AD rats with sevo treatment. CONCLUSION: Up-regulated miR-132 reduces the cognition-damaging effect of sevo on AD rats by inhibiting FOXA1.


Asunto(s)
Enfermedad de Alzheimer , MicroARNs , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Animales , Apoptosis , Cognición , Factor Nuclear 3-alfa del Hepatocito/genética , Factor Nuclear 3-alfa del Hepatocito/farmacología , MicroARNs/genética , MicroARNs/metabolismo , Ratas , Sevoflurano/farmacología
10.
Zhongguo Zhong Yao Za Zhi ; 47(13): 3475-3480, 2022 Jul.
Artículo en Zh | MEDLINE | ID: mdl-35850798

RESUMEN

The present study prepared shell-core nanoparticles comprising poly(lactic-co-glycolic acid)(PLGA) cores encapsulated by shells composed of mixed lipids(Lipoid S100 and DSPE-PEG 2000) or polymer F127 to investigate the effects of shell composition on overcoming physiological barriers of gastrointestinal mucus and intestinal epithelial cells and improving bioavailability.The results are expected to provide references for the research on the improvement of the oral bioavailability of Chinese medicine by nanocar-riers. Silibinin(SLB) was used as a model drug to prepare PLGA nanoparticles coated with the shell of mixed lipids(SLB-LPNs) or F127(SLB-FPNs) via a modified nanoprecipitation method.Transmission electron microscopy showed that both LPNs and FPNs were spherical with a core-shell structure.The average particle sizes of SLB-LPNs and SLB-FPNs were(94.13±2.23) and(95.42±4.91) nm, respectively.The Zeta potential values were(-39.3±2.8) and(-17.0±0.2) mV, respectively.X-ray diffraction analysis revealed the presence of SLB in the two types of nanoparticles in a molecular or amorphous state.The ability of nanoparticles to cross both the mucus and epithelial barriers were evaluated using the cellular internalization kinetics assay.LPNs showed a higher rate of cell internalization than FPNs, indicating that LPNs could penetrate the mucus layer and become internalized by cells more rapidly.As revealed by the in vivo pharmacokinetic assay in rats with SLB suspension as the reference, the relative oral bioavailability of SLB-LPNs and SLB-FPNs was 400.37% and 923.31%, respectively.The effect of SLB-FPNs in improving oral bioavailability was more significant than that of SLB-LPNs.In summary, shell composition can influence the ability of nanoparticles to overcome oral physiological bar-riers, such as the mucus layer and intestinal epithelial cells, and improve oral bioavailability.Shell-core structured nanoparticles are promising nanocarriers for oral drug delivery systems.


Asunto(s)
Nanopartículas , Animales , Disponibilidad Biológica , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Moco , Nanopartículas/química , Tamaño de la Partícula , Polímeros , Ratas
11.
J Nanobiotechnology ; 19(1): 245, 2021 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-34391438

RESUMEN

BACKGROUND: A red blood cell membrane (RBCm)-derived drug delivery system allows prolonged circulation of an antitumor treatment and overcomes the issue of accelerated blood clearance induced by PEGylation. However, RBCm-derived drug delivery systems are limited by low drug-loading capacities and the lack of tumor-targeting ability. Thus, new designs of RBCm-based delivery systems are needed. RESULTS: Herein, we designed hyaluronic acid (HA)-hybridized RBCm (HA&RBCm)-coated lipid multichambered nanoparticles (HA&RBCm-LCNPs) to remedy the limitations of traditional RBCm drug delivery systems. The inner core co-assembled with phospholipid-regulated glycerol dioleate/water system in HA&RBCm-LCNPs met the required level of blood compatibility for intravenous administration. These newly designed nanocarriers had a honeycomb structure with abundant spaces that efficiently encapsulated paclitaxel and IR780 for photochemotherapy. The HA&RBCm coating allowed the nanocarriers to overcome the reticuloendothelial system barrier and enhanced the nanocarriers specificity to A549 cells with high levels of CD44. These properties enhanced the combinatorial antitumor effects of paclitaxel and IR780 associated with microtubule destruction and the mitochondrial apoptotic pathway. CONCLUSIONS: The multifunctional HA&RBCm-LCNPs we designed expanded the functionality of RBCm and resulted in a vehicle for safe and efficient antitumor treatment.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Sistema de Administración de Fármacos con Nanopartículas , Fotoquimioterapia/métodos , Células A549 , Animales , Apoptosis , Biomimética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Portadores de Fármacos/química , Membrana Eritrocítica , Eritrocitos , Humanos , Liposomas/química , Neoplasias Pulmonares/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Nanopartículas/química , Neoplasias , Paclitaxel/farmacología , Tamaño de la Partícula , Células RAW 264.7 , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Zhongguo Zhong Yao Za Zhi ; 46(21): 5650-5657, 2021 Nov.
Artículo en Zh | MEDLINE | ID: mdl-34951218

RESUMEN

Hot melt pressure-sensitive adhesive(HMPSA) has broad application potential in the field of traditional Chinese medicine(TCM) plasters due to its high drug loading, weak skin irritation, satisfactory adhesion, etc. compared with rubber plasters.However, the structure of HMPSA is prone to suffer from the damage caused by volatile oils in TCM plasters. In view of this, a kind of HMPSA with a stable structure was prepared by physical blending of DINCH, polypropylene wax and liquid rubber(LIR) in the present study, which is denoted as DPL. The dosage of cinnamon volatile oil(CVO), the model drug, was selected with viscosity, softening point and cohesion as evaluation indexes. The interaction between DPL and HMPSA was investigated by Fourier transform infrared spectroscopy(FT-IR) and differential scanning calorimetry(DSC). The compatibility of HMPSA with CVO and its transdermal ability were studied by in vitro transdermal test, adhesion, scanning electron microscopy( SEM) and rheological evaluation. The results showed that 5% CVO began to damage the structure of HMPSA. The initial adhesion and holding adhesion of DPL-modified HMPSA(DPL-HMPSA) were not significantly changed compared with those of HMPSA, whereas the 180° peel strength was decreased. FI-IR unraveled that DPL formed the n-π conjugated system with styrene-isoprene-styrene block copolymer(SIS), and there was no significant difference in the glass transition temperature according to DSC results, which indicated the good compatibility of DPL with HMPSA. With 5% CVO loaded, the drug content of DPL-HMPSA was 1. 14 times higher than that of HMPSA, and the decrease rate of drug content in DPL-HMPSA was 16% lower than that in HMPSA after 3 months. SEM demonstrated that CVO did not cause obvious structural damage to DPL-HMPSA. Rheological evaluation revealed that the storage modulus and loss factor of DPL-HMPSA were higher than those of HMPSA, and the cohesion was also stronger. The percutaneous penetration rate of cinnamaldehyde in DPL-HMPSA was 2. 25 times that of HMPSA. In conclusion, DPL-HMPSA had more stable structure, better compatibility with CVO, and higher in vitro transdermal efficiency of cinnamaldehyde than before the modification. This study can provide reference for the mitigation of the matrix structure damage caused by volatile oil components in TCM plasters and the enhancement of the content and in vitro transdermal rate of drug.


Asunto(s)
Cinnamomum zeylanicum , Aceites Volátiles , Adhesivos , Administración Cutánea , Espectroscopía Infrarroja por Transformada de Fourier
13.
Zhongguo Zhong Yao Za Zhi ; 46(19): 4978-4985, 2021 Oct.
Artículo en Zh | MEDLINE | ID: mdl-34738392

RESUMEN

In this paper, co-processed lactose SuperTab 40 LL was selected as fillers to study the preparation of musk sustained-release mini-tablets in the Xihuang multiple-unit drug release system. Musk sustained-release tablets containing different proportions of SuperTab 40 LL and MCC were prepared under various pressures, and then the compressibility and compactibility of these prescriptions were evaluated by Walker, Heckel and Ryshkewitch-Duckworth equations. In addition, the fluidity of the prescriptions was evaluated by parameters of Kawakita equation. There was a comprehensive analysis of the effect of SuperTab 40 LL on musk sustained-release mini-tablets combined with the appearance of SuperTab 40 LL and their tensile strength. The results shown that SuperTab 40 LL had better compression process through the Heckel equation, and the direct compression process of drug powders with excipients can be analyzed by the Kawakita and Ryshkewitch-Duckworth equations. As a new type of co-processed lactose, SuperTab 40 LL had a good fluidity and compactibility. SuperTab 40 LL may undergo particle crushing and plastic deformation during the compression process, which increased the contact area and bonding sites between the particles, and aggregated and shaped the mixed powder easy. Moreover, MCC showed a synergistic effect, and the combined application with SuperTab 40 ll could effectively improve the fluidity and compressibility of the musk sustained-release powder. When the ratio of SuperTab 40 LL and MCC was 2∶1, musk sustained-release mini-tablets had a high drug loading capacity and good compactibility in line with the design objectives.


Asunto(s)
Excipientes , Modelos Teóricos , Preparaciones de Acción Retardada , Composición de Medicamentos , Ácidos Grasos Monoinsaturados , Polvos , Comprimidos
14.
J Nanobiotechnology ; 18(1): 83, 2020 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-32473632

RESUMEN

BACKGROUND: Breast cancer lung metastasis occurs in more than 60% of all patients with breast cancer, and most of those afflicted by it eventually die of recurrence. The tumor microenvironment plays vital roles in metastasis. Modulating the tumor microenvironment via multiple pathways could efficiently prevent or inhibit lung metastasis. Silibinin and cryptotanshinone are natural plant products that demonstrate anti-metastasis effects and modulate the tumor microenvironment via different pathways. However, they have poor aqueous solubility, membrane permeability, and oral bioavailability. Oral drug administration may help improve the quality of life and compliance of patients with breast cancer, primarily under long-term and/or follow-up therapy. Herein, we developed poly-N-(2-hydroxypropyl) methacrylamide (pHPMA)-coated wheat germ agglutinin-modified lipid-polymer hybrid nanoparticles, co-loaded with silibinin and cryptotanshinone (S/C-pW-LPNs). We assessed their oral bioavailability, and evaluated their anti-metastasis efficacy in a 4T1 breast cancer tumor-bearing nude mouse model. RESULTS: An in vitro mucus diffusion study revealed that pHPMA enhanced W-LPN mucus penetration. After oral administration, pHPMA enhanced nanoparticle distribution in rat jejunum and substantially augmented oral bioavailability. S/C-W-LPNs markedly increased 4T1 cell toxicity and inhibited cell invasion and migration. Compared to LPNs loaded with either silibinin or cryptotanshinone alone, S/C-pW-LPNs dramatically slowed tumor progression in 4T1 tumor-bearing nude mice. S/C-pW-LPNs presented with the most robust anti-metastasis activity on smooth lung surfaces and mitigated lung metastasis foci. They also downregulated tumor microenvironment biomarkers such as CD31, TGF-ß1, and MMP-9 that promote metastasis. CONCLUSIONS: Silibinin- and cryptotanshinone-co-loaded pW-LPNs efficiently penetrate intestinal barriers, thereby enhancing the oral bioavailability of the drug loads. These nanoparticles exhibit favorable anti-metastasis effects in breast cancer-bearing nude mice. Hence, S/C-pW-LPNs are promising oral drug nanocarriers that inhibit breast cancer lung metastasis.


Asunto(s)
Antineoplásicos , Neoplasias Pulmonares , Nanopartículas , Fenantrenos , Silibina , Animales , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Disponibilidad Biológica , Neoplasias de la Mama/patología , Células CACO-2 , Movimiento Celular/efectos de los fármacos , Células HT29 , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundario , Ratones , Ratones Endogámicos BALB C , Moco/química , Moco/metabolismo , Nanopartículas/química , Nanopartículas/metabolismo , Neoplasias Experimentales , Fenantrenos/química , Fenantrenos/farmacocinética , Fenantrenos/farmacología , Ratas Sprague-Dawley , Silibina/química , Silibina/farmacocinética , Silibina/farmacología , Microambiente Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Nanomedicine ; 28: 102212, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32334099

RESUMEN

Percutaneous absorption of drugs can be enhanced by ethosomes, which are nanocarriers with excellent deformability and drug-loading properties. However, the ethanol within ethosomes increases phospholipid membrane fluidity and permeability, leading to drug leakage during storage. Here, we developed and characterized a new phospholipid nanovesicles that is co-hybridized with hyaluronic acid (HA), ethanol and the encapsulated volatile oil medicines (eugenol and cinnamaldehyde [EUG/CAH]) for transdermal administration. In comparison with EUG/CAH-loaded ethosomes (ES), the formulation stability and percutaneous drug absorption of EUG/CAH-loaded HA-immobilized ethosomes (HA-ES) were significantly improved. After transdermal administration of HA-ES, the interstitial cells of Cajal in the colon of rats with trinitrobenzene sulfonate-induced ulcerative colitis (UC) were significantly increased, and the stem cell factor/c-kit signaling pathway was partly repaired. Overall, HA-ES possesses excellent deformability and showed improved efficacy against UC compared with ES, which is demonstrated as a promising transdermal delivery vehicle for volatile oil medicines.


Asunto(s)
Acroleína/análogos & derivados , Colitis Ulcerosa/tratamiento farmacológico , Eugenol/uso terapéutico , Acroleína/administración & dosificación , Acroleína/uso terapéutico , Administración Cutánea , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Eugenol/administración & dosificación , Humanos , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Liposomas/química , Nanopartículas/química , Transición de Fase , Fosfolípidos/química , Ratas , Piel/metabolismo
16.
Nanomedicine ; 29: 102237, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32534047

RESUMEN

Recently, functional liposomes modified with versatile polymer and cell-based- biomimetic nanoparticles have emerged as the most advanced lipid-polymer hybrid nanocarriers (LPNs) for drug delivery. This review highlights the advances of these two LPNs in the delivery of active ingredients and fractions from Chinese medicine with promising therapeutic, chemopreventive, or chemosensitive effects. To understand their complete potency, the relationship between the nanoparticle characteristics and their in vitro and in vivo performance characteristics has been discussed. Polymer-modified liposomes and cell-based biomimetic nanoparticles are beneficial for improving absorption, modulating release, targeting and overcoming multidrug resistance, and reducing side effects. The associated challenges, current limitations, and opportunities in this field are also discussed.


Asunto(s)
Materiales Biomiméticos/química , Portadores de Fármacos/uso terapéutico , Medicina Tradicional China , Nanopartículas/química , Materiales Biomiméticos/uso terapéutico , Portadores de Fármacos/química , Humanos , Lípidos/química , Lípidos/fisiología , Liposomas/química , Liposomas/uso terapéutico , Nanopartículas/uso terapéutico , Polímeros/química , Polímeros/uso terapéutico
17.
Nanomedicine ; 21: 102075, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31377378

RESUMEN

To improve Biopharmaceutics Classification System class IV drug bioavailability, mucus and underlying intestinal epithelial barriers must be overcome. Hydrophilic nanoparticle coatings may hinder cellular uptake and transport. We integrated hydrophilic, detachable poly(N-(2-hydroxypropyl) methacrylamide) with vitamin B12-modified chitosan into lipid polymeric nanoparticles (H/VC-LPNs) to enhance mucus penetration, intracellular uptake, and transepithelial absorption. Multiple particle tracking revealed accelerated mucus diffusion into porcine mucus in vitro. The nanoparticles increased uptake and intracellular distribution in Caco-2 cells, which may involve intrinsic factor receptor-mediated endocytosis and intercellular tight junctions. Integration of improved mucus penetration and intracellular absorption was confirmed by in vitro internalization kinetics in HT29-MTX/Caco-2 co-cultures and in vivo distribution, transport, and mouse Peyer's patch absorption. H/VC-LPNs substantially increased curcumin bioavailability in rats. A nanocarrier with a dissociable shell, receptor-mediated intracellular penetration, and paracellular transport may be promising for oral curcumin delivery. This study identified the key factors involved in oral bioavailability enhancement.


Asunto(s)
Sistemas de Liberación de Medicamentos , Mucosa Intestinal/metabolismo , Lípidos , Nanopartículas/química , Ganglios Linfáticos Agregados/metabolismo , Administración Oral , Animales , Transporte Biológico Activo , Células CACO-2 , Quitosano/química , Quitosano/farmacocinética , Quitosano/farmacología , Femenino , Humanos , Lípidos/química , Lípidos/farmacocinética , Lípidos/farmacología , Ratones , Ratas , Vitamina B 12/química , Vitamina B 12/farmacocinética , Vitamina B 12/farmacología
18.
AAPS PharmSciTech ; 20(3): 115, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30771018

RESUMEN

Naringenin exerts anti-inflammatory, hypolipidemic, and hepatoprotective effects; however, it shows low oral bioavailability because of poor water solubility. In this work, cocrystals of naringenin were formed to address these issues. Using the solution crystallization method, various naringenin cocrystals were prepared with different cocrystal coformers, including naringenin-nicotinamide, naringenin-isonicotinamide, naringenin-caffeine, naringenin-betaine, and naringenin-L-proline. The formation of these cocrystals was assayed by using DSC, XRD, and FT-IR spectroscopy. The stoichiometric ratio of naringenin and the CCFs in the corresponding cocrystals was investigated by NMR. The solubility of naringenin, as well as its dissolution rate, was markedly improved by forming cocrystals. The oral bioavailability of naringenin administered as naringenin-L-proline and naringenin-betaine cocrystals was achieved significantly greater than that of pure naringenin (p < 0.05). In particular, the Cmax of naringenin-L-proline and naringenin-betaine cocrystals were 2.00-fold and 3.35-fold higher, and the AUC of naringenin-L-proline and naringenin-betaine cocrystals were 2.39-fold and 4.91-fold, respectively, higher than pure naringenin in rats. With the naringenin-betaine cocrystals for oral delivery, the drug distribution in the liver was significantly increased compared to pure naringenin. Accordingly, the naringenin-betaine cocrystals showed improved anti-hyperlipidemia effects on the C57 BL/6J PNPLA3 I148M transgenic mouse hyperlipidemia model. Collectively, cocrystal formation is a promising way to increase the bioavailability of naringenin for treating hyperlipidemia.


Asunto(s)
Flavanonas/farmacología , Flavanonas/farmacocinética , Hipolipemiantes/farmacología , Hipolipemiantes/farmacocinética , Animales , Betaína/química , Disponibilidad Biológica , Cafeína/química , Rastreo Diferencial de Calorimetría , Cristalización , Flavanonas/química , Hipolipemiantes/química , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Niacinamida/administración & dosificación , Prolina/química , Ratas , Ratas Sprague-Dawley , Soluciones , Espectroscopía Infrarroja por Transformada de Fourier
19.
AAPS PharmSciTech ; 21(1): 22, 2019 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-31823083

RESUMEN

In the present study, a novel transdermal delivery system was developed and its advantages were demonstrated. Ibuprofen is a commonly used anti-inflammatory, antipyretic, and analgesic drug; however, because of its short biological half-life, it must be frequently administered orally and is highly irritating to the digestive tract. To prepare a novel transdermal delivery system for ibuprofen, a microemulsion was used as a drug carrier and dispersed in a hyaluronic acid-based hydrogel (ME/Gel) to increase percutaneous drug absorption while avoiding gastrointestinal tract irritation. The prepared microemulsion had a droplet size of ~ 90 nm, and the microemulsion had good stability in the hydrogel. Rheological tests revealed that the ME/Gel is a pseudoplastic fluid with decreased viscosity and increased shear rate. It displayed a certain viscoelasticity, and the microemulsion distribution displayed minor effects on the rheological characteristics of the hydrogel system. There was no significant difference in the rheology of the ME/Gel at 25°C and 32°C (normal skin surface temperature), which is beneficial for clinical application. Drug transdermal flux was significantly higher than that of the hydrogel and commercial cream groups (p < 0.01). The 24-h cumulative drug permeation amount was 1.42-fold and 2.52-fold higher than that of the hydrogel and cream groups, respectively. By loading into the ME/Gel, the cytotoxicity of the drug to HaCaT cells was reduced. These results indicate that the prepared ME/Gel can effectively improve transdermal ibuprofen delivery and the biosafety of the drug and could therefore have applicability as a drug delivery system.


Asunto(s)
Sistemas de Liberación de Medicamentos , Ácido Hialurónico/química , Ibuprofeno/química , Administración Cutánea , Animales , Composición de Medicamentos , Sistemas de Liberación de Medicamentos/métodos , Emulsiones/química , Glicoles de Etileno/química , Hidrogeles/química , Masculino , Ratones , Ratones Endogámicos BALB C , Ácidos Oléicos/química , Polietilenglicoles/química , Ratas , Ratas Sprague-Dawley
20.
AAPS PharmSciTech ; 20(7): 289, 2019 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-31414349

RESUMEN

The aim of this study was to evaluate the use of a novel porous silica carrier, AEROPERL® 300 Pharma (AP), to improve the in vitro release and oral bioavailability of puerarin (PUE) in solid dispersions (SDs). PUE-AP SD formulations with different ratios of drug to silica (RDS) were prepared by the solvent method. The scanning electron microscopy (SEM) results indicated that the dispersion of PUE improved as the concentration of AP was increased. The differential scanning calorimetry (DSC) and X-ray diffraction (XRD) results revealed that PUE mostly existed in an amorphous state in the SDs. The rate of drug dissolution from the SDs was significantly higher than that from the PUE powder (p < 0.05). The in vitro drug release percentage from the PUE-AP SDs increased as the RDS was reduced. The oral bioavailability of PUE from the SDs improved when using AP, as indicated by AUC(0-∞), which was 2.05 and 2.01 times greater than that of the PUE (API) and PVP K30 SDs, respectively (p < 0.05). The drug content, in vitro release profiles, and the amorphous state of PUE in the PUE-AP SDs showed no significant changes after being stored at room temperature for 6 months or under accelerated conditions (40 ± 2°C, 75 ± 5% relative humidity) for 3 months. AP has a high pore volume, large specific surface area, excellent flowability, and hydrophilic properties, making it capable of improving the dissolution and bioavailability of poorly water-soluble drugs.


Asunto(s)
Portadores de Fármacos , Isoflavonas/administración & dosificación , Dióxido de Silicio/química , Animales , Disponibilidad Biológica , Rastreo Diferencial de Calorimetría , Composición de Medicamentos/métodos , Interacciones Hidrofóbicas e Hidrofílicas , Isoflavonas/farmacocinética , Masculino , Microscopía Electrónica de Rastreo , Porosidad , Povidona/química , Difracción de Polvo , Ratas , Ratas Sprague-Dawley , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA