Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(13): e2119051119, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35333649

RESUMEN

SignificanceHematopoietic stem cells (HSCs) are generated from specialized endothelial cells, called hemogenic endothelial cells (HECs). It has been debated whether HECs and non-HSC-forming conventional endothelial cells (cECs) arise from a common precursor or represent distinct lineages. Moreover, the molecular basis underlying their distinct fate determination is poorly understood. We use photoconvertible labeling, time-lapse imaging, and single-cell RNA-sequencing analysis to trace the lineage of HECs. We discovered that HECs and cECs arise from a common hemogenic angioblast precursor, and their distinct fate is determined by high or low dosage of Etv2, respectively. Our results illuminate the lineage origin and a mechanism on the fate determination of HECs, which may enhance the understanding on the ontogeny of HECs in vertebrates.


Asunto(s)
Hemangioblastos , Hematopoyesis , Animales , Diferenciación Celular , Endotelio Vascular
2.
Proc Natl Acad Sci U S A ; 119(39): e2203273119, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36122226

RESUMEN

Microglia are the central nervous system (CNS)-resident macrophages involved in neural inflammation, neurogenesis, and neural activity regulation. Previous studies have shown that naturally occurring neuronal apoptosis plays a critical role in regulating microglial colonization of the brain in zebrafish. However, the molecular signaling cascades underlying neuronal apoptosis-mediated microglial colonization and the regulation of these cascades remain undefined. Here, we show that basic leucine zipper (b-Zip) transcription factors, Mafba and Mafbb, two zebrafish orthologs of mammalian MAFB, are key regulators in neuronal apoptosis-mediated microglial colonization of the brain in zebrafish. We document that the loss of Mafba and Mafbb function perturbs microglial colonization of the brain. We further demonstrate that Mafba and Mafbb act cell-autonomously and cooperatively to orchestrate microglial colonization, at least in part, by regulating the expression of G protein-coupled receptor 34a (Gpr34a), which directs peripheral macrophage recruitment into the brain through sensing the lysophosphatidylserine (lysoPS) released by the apoptotic neurons. Our study reveals that Mafba and Mafbb regulate neuronal apoptosis-mediated microglial colonization of the brain in zebrafish via the lysoPS-Gpr34a pathway.


Asunto(s)
Microglía , Pez Cebra , Animales , Encéfalo/fisiología , Quimiotaxis , Factores de Transcripción Maf , Mamíferos/metabolismo , Microglía/metabolismo , Proteínas Oncogénicas , Factores de Transcripción/metabolismo , Pez Cebra/metabolismo , Proteínas de Pez Cebra
3.
Expert Rev Proteomics ; 12(1): 37-60, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25578092

RESUMEN

Protein-protein interactions are central to all cellular processes. Understanding of protein-protein interactions is therefore fundamental for many areas of biochemical and biomedical research and will facilitate an understanding of the cell process-regulating machinery, disease causative mechanisms, biomarkers, drug target discovery and drug development. In this review, we summarize methods for populating and analyzing the interactome, highlighting their advantages and disadvantages. Applications of interactomics in both the biochemical and clinical arenas are presented, illustrating important recent advances in the field.


Asunto(s)
Mapas de Interacción de Proteínas , Proteoma/metabolismo , Proteómica/métodos , Análisis de Secuencia de Proteína/métodos , Animales , Bases de Datos de Proteínas , Humanos , Unión Proteica , Proteoma/química
4.
Elife ; 92020 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-31904340

RESUMEN

Heterogeneity broadly exists in various cell types both during development and at homeostasis. Investigating heterogeneity is crucial for comprehensively understanding the complexity of ontogeny, dynamics, and function of specific cell types. Traditional bulk-labeling techniques are incompetent to dissect heterogeneity within cell population, while the new single-cell lineage tracing methodologies invented in the last decade can hardly achieve high-fidelity single-cell labeling and long-term in-vivo observation simultaneously. In this work, we developed a high-precision infrared laser-evoked gene operator heat-shock system, which uses laser-induced CreERT2 combined with loxP-DsRedx-loxP-GFP reporter to achieve precise single-cell labeling and tracing. In vivo study indicated that this system can precisely label single cell in brain, muscle and hematopoietic system in zebrafish embryo. Using this system, we traced the hematopoietic potential of hemogenic endothelium (HE) in the posterior blood island (PBI) of zebrafish embryo and found that HEs in the PBI are heterogeneous, which contains at least myeloid unipotent and myeloid-lymphoid bipotent subtypes.


Animals begin life as a single cell that then divides to become a complex organism with many different types of cells. Every time a cell divides, each of its two daughter cells can either stay the same type as their parent or adopt a different identity. Once a cell acquires an identity, it usually cannot 'go back' and choose another. Eventually, this process will produce daughter cells with the identity of a specific tissue or organ and that cannot divide further. Multipotent cells are cells that can produce daughter cells with different identities, including other multipotent cells. These cells can usually give rise to different cell types in a specific organ, and generate more cells to replace any cells that die in that organ. Tracking the cells descended from a multipotent cell in a specific tissue can provide information about how the tissue develops. Hemogenic endothelium cells produce the multipotent cells that give rise to two types of white blood cells: myeloid cells and lymphoid cells. Myeloid cells include innate immune cells that protect the body from infection non-specifically; while lymphoid cells include T cells and B cells with receptors that detect specific bacteria or viruses. It remains unclear whether each of these two cell types originate from a single population of hemogenic endothelium cells or from two distinct subpopulations. He et al. have now developed a new optical technique to label a single hemogenic endothelium cell in a zebrafish and track the cell and its descendants. This method revealed that there are at least two distinct populations of hemogenic endothelium cells. One of them can give rise to both lymphoid and myeloid cells, while the other can only give rise to myeloid cells. These findings shed light on the mechanisms of blood formation, and potentially could provide useful tools to study the development of diseases such as leukemia. Additionally, the single-cell labeling technology He et al. have developed could be applied to study the development of other tissues and organs.


Asunto(s)
Linaje de la Célula , Microscopía Confocal , Análisis de la Célula Individual/métodos , Pez Cebra , Animales , Análisis de la Célula Individual/instrumentación
6.
J Exp Med ; 214(11): 3347-3360, 2017 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-28931624

RESUMEN

T lymphocytes are key cellular components of the adaptive immune system and play a central role in cell-mediated immunity in vertebrates. Despite their heterogeneities, it is believed that all different types of T lymphocytes are generated exclusively via the differentiation of hematopoietic stem cells (HSCs). Using temporal-spatial resolved fate-mapping analysis and time-lapse imaging, here we show that the ventral endothelium in the zebrafish aorta-gonad-mesonephros and posterior blood island, the hematopoietic tissues previously known to generate HSCs and erythromyeloid progenitors, respectively, gives rise to a transient wave of T lymphopoiesis independent of HSCs. This HSC-independent T lymphopoiesis occurs early and generates predominantly CD4 Tαß cells in the larval but not juvenile and adult stages, whereas HSC-dependent T lymphopoiesis emerges late and produces various subtypes of T lymphocytes continuously from the larval stage to adulthood. Our study unveils the existence, origin, and ontogeny of HSC-independent T lymphopoiesis in vivo and reveals the complexity of the endothelial-hematopoietic transition of the aorta.


Asunto(s)
Aorta/citología , Embrión no Mamífero/citología , Endotelio Vascular/citología , Células Madre Hematopoyéticas/citología , Linfopoyesis , Linfocitos T/citología , Animales , Animales Modificados Genéticamente , Aorta/embriología , Aorta/metabolismo , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Endotelio Vascular/embriología , Endotelio Vascular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Gónadas/citología , Gónadas/embriología , Gónadas/metabolismo , Células Madre Hematopoyéticas/metabolismo , Hibridación in Situ , Mesonefro/citología , Mesonefro/embriología , Mesonefro/metabolismo , Microscopía Confocal , Linfocitos T/metabolismo , Imagen de Lapso de Tiempo/métodos , Pez Cebra
7.
Histol Histopathol ; 30(1): 13-31, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25053532

RESUMEN

Fibroblast growth factor receptors (FGFRs), encoded by four genes (FGFR1, FGFR2, FGFR3, and FGFR4) are tightly associated with many biological processes such as organ development, cell proliferation and migration. Studies over the past decades have validated the pivotal roles FGFRs play in tumorigenesis due to the regulation of diverse tumorigenesis-related processes, including cell survival, proliferation, inflammation, metastasis and angiogenesis. Interestingly, FGFR mutations in somatic cells leading to tumorigenesis and those in germ cells leading to developmental disorders are identical, suggesting that FGFR mutations result in different diseases due to their spatio-temporal expression. Thus, discoveries in developmental biology may also be applicable to cancer. FGFRs regulate the expression and/or the activity of a myriad of molecules (e.g. matrix metalloproteinases (MMPs) and Snail) that are tightly linked to tumorigenesis by four main signaling pathways (RAS-MAPK, PI3K-AKT, PLCγ-PIP2, and STAT), as well as other minor branches. Epigenetic and genetic alteration of FGFR genes, including DNA methylation, histone remodeling, microRNA regulation, single nucleotide polymorphisms (SNPs), gene missense mutations, amplification, and fusion of FGFRs with other genes, which result in gain or loss of FGFR function, have been identified in many types of cancer. In this review, we focus in particular on recent advances in the relationship between FGFR disorders and tumorigenesis.


Asunto(s)
Carcinogénesis/metabolismo , Proliferación Celular , Neovascularización Patológica/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Carcinogénesis/patología , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Progresión de la Enfermedad , Humanos , Neovascularización Patológica/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA