Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(21): 14754-14764, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38754363

RESUMEN

Lithium-sulfur (Li-S) batteries are highly considered as next-generation energy storage techniques. Weakly solvating electrolyte with low lithium polysulfide (LiPS) solvating power promises Li anode protection and improved cycling stability. However, the cathodic LiPS kinetics is inevitably deteriorated, resulting in severe cathodic polarization and limited energy density. Herein, the LiPS kinetic degradation mechanism in weakly solvating electrolytes is disclosed to construct high-energy-density Li-S batteries. Activation polarization instead of concentration or ohmic polarization is identified as the dominant kinetic limitation, which originates from higher charge-transfer activation energy and a changed rate-determining step. To solve the kinetic issue, a titanium nitride (TiN) electrocatalyst is introduced and corresponding Li-S batteries exhibit reduced polarization, prolonged cycling lifespan, and high actual energy density of 381 Wh kg-1 in 2.5 Ah-level pouch cells. This work clarifies the LiPS reaction mechanism in protective weakly solvating electrolytes and highlights the electrocatalytic regulation strategy toward high-energy-density and long-cycling Li-S batteries.

2.
Small ; : e2403130, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38751304

RESUMEN

Polycrystalline yttrium aluminum garnet (YAG) ceramic doped with neodymium (Nd), referred to as Nd:YAG, is widely used in solid-state lasers. However, conventional powder metallurgy methods suffer from expenses, time consumption, and limitations in customizing structures. This study introduces a novel approach for creating Nd:YAG ceramics with 3D free-form structures from micron (∼70 µm) to centimeter scales. Firstly, sol-gel synthesis is employed to form photocurable colloidal solutions. Subsequently, by utilizing a home-built micro-continuous liquid interface printing process, precursors are printed into 3D poly(acrylic acid) hydrogels containing yttrium, aluminum, and neodymium hydroxides, with a resolution of 5.8 µm pixel-1 at a speed of 10 µm s-1. After the hydrogels undergo thermal dehydration, debinding, and sintering, polycrystalline Nd:YAG ceramics featuring distinguishable grains are successfully produced. By optimizing the concentrations of the sintering aids (tetraethyl orthosilicate) and neodymium trichloride (NdCl3), the resultant samples exhibit satisfactory photoluminescence, emitting light concentrated at 1064 nm when stimulated by a 532 nm laser. Additionally, Nd:YAG ceramics with various 3D geometries (e.g., cone, spiral, and angled pillar) are printed and characterized, which demonstrates the potential for applications, such as laser and amplifier fibers, couplers, and splitters in optical circuits, as well as gain metamaterials or metasurfaces.

3.
Opt Lett ; 49(11): 2946-2949, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824299

RESUMEN

Ti3C2Tx MXene is an emerging two-dimensional material that has good potential in relative humidity (RH) measurement because of its unique layer structure, strong hydrophilic nature, and large specific surface area. Here, a high-performance RH sensor integrating Ti3C2TX MXene nanosheets and U-shaped tapered no-core fiber (UTNCF) is proposed. The sensing principle is based on mode interference. The change of ambient RH leads to the change of the refractive index (RI) of Ti3C2Tx MXene, which eventually leads to the shift of the transmission spectrum of the sensing probe. The average sensitivity is 1.11 nm/%RH in the RH range of 45% to 80%, and the response time is 25 ms. The proposed micro-nano fiber RH sensor has the advantages of high sensitivity, fast response, good repeatability, and stability. In addition, the proposed sensor has a broad application prospect in human respiratory monitoring, industrial and agricultural production, and environmental monitoring.

4.
Sleep Breath ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38858327

RESUMEN

OBJECTIVES: (1) Assess the prevalence of postoperative insomnia; (2) identify the risk factors for postoperative insomnia before exposure to surgery; (3) explore the impact of postoperative insomnia on rehabilitation. METHODS: A study was conducted with 132 participants aged ≥ 65 undergoing spine interbody fusion. We collected the basic demographic data, Numeric Rating Scales (NRS), Pittsburgh Sleep Quality Index (PSQI), Geriatric Depression Scale (GDS), and Beck Anxiety Inventory (BAI). We measured Quality of Recovery 40 (QoR-40), GDS, BAI, NRS, and PSQI on the first and third nights post-surgery, followed by QoR-40 and NRS assessments two weeks after surgery. RESULTS: The cases of postoperative insomnia on the first and third nights and after two weeks were 81 (61.36%), 72 (54.55%), and 64 (48.48%), respectively, and the type of insomnia was not significantly different (P = 0.138). Sleep efficiency on the first night was 49.96% ± 23.51. On the first night of postoperative insomnia, 54 (66.67%) cases were depression or anxiety, and the PSQI was higher in this group than in the group without anxiety or depression (P < 0.001). PSQI, GDS, and the time of surgery were related factors for postoperative insomnia (PPSQI < 0.001, PGDS = 0.008, and PTime = 0.040). Postoperative rehabilitation showed differences between the insomnia and non-insomnia groups (P < 0.001). CONCLUSIONS: The prevalence of postoperative insomnia in the elderly was high, and postoperative insomnia had a significant correlation with postoperative rehabilitation. Interventions that target risk factors may reduce the prevalence of postoperative insomnia and warrant further research. CLINICAL TRIAL REGISTRATION: Multivariate analysis of postoperative insomnia in elderly patients with spinal surgery and its correlation with postoperative rehabilitation ( https://www.chictr.org.cn/bin/project/edit?pid=170201 ; #ChiCTR2200059827).

5.
Angew Chem Int Ed Engl ; 63(19): e202400343, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38323892

RESUMEN

Lithium polysulfides (LiPSs) are pivotal intermediates involved in all the cathodic reactions in lithium-sulfur (Li-S) batteries. Elucidating the solvation structure of LiPSs is the first step for rational design of electrolyte and improving Li-S battery performances. Herein, we investigate the solvation structure of LiPSs and find that Li salt anions tend to enter the first solvation sheath of LiPSs and form contact ion pairs in electrolyte. The anion-involved solvation structure of LiPSs significantly influences the intrinsic kinetics of the sulfur redox reactions. In particular, the LiPS solvation structure modified by lithium bis(fluorosulfonyl)imide endows Li-S batteries with reduced polarization and enhanced rate performances under high sulfur areal loading and lean electrolyte volume conditions. This work updates the fundamental understanding of the solvation chemistry of LiPSs and highlights electrolyte engineering for promoting the performances of Li-S batteries.

6.
Mol Divers ; 27(1): 81-102, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35258759

RESUMEN

Xuanbai Chengqi Decoction (XBCQD), a classic traditional Chinese medicine, has been widely used to treat COVID-19 in China with remarkable curative effect. However, the chemical composition and potential therapeutic mechanism is still unknown. Here, we used multiple open-source databases and literature mining to select compounds and potential targets for XBCQD. The COVID-19 related targets were collected from GeneCards and NCBI gene databases. After identifying putative targets of XBCQD for the treatment of COVID-19, PPI network was constructed by STRING database. The hub targets were extracted by Cytoscape 3.7.2 and MCODE analysis was carried out to extract modules in the PPI network. R 3.6.3 was used for GO enrichment and KEGG pathway analysis. The effective compounds were obtained via network pharmacology and bioinformatics analysis. Drug-likeness analysis and ADMET assessments were performed to select core compounds. Moreover, interactions between core compounds and hub targets were investigated through molecular docking, molecular dynamic (MD) simulations and MM-PBSA calculations. As a result, we collected 638 targets from 61 compounds of XBCQD and 845 COVID-19 related targets, of which 79 were putative targets. Based on the bioinformatics analysis, 10 core compounds and 34 hub targets of XBCQD for the treatment of COVID-19 were successfully screened. The enrichment analysis of GO and KEGG indicated that XBCQD mainly exerted therapeutic effects on COVID-19 by regulating signal pathways related to viral infection and inflammatory response. Meanwhile, the results of molecular docking showed that there was a stable binding between the core compounds and hub targets. Moreover, MD simulations and MM-PBSA analyses revealed that these compounds exhibited stable conformations and interacted well with hub targets during the simulations. In conclusion, our research comprehensively explained the multi-component, multi-target, and multi-pathway intervention mechanism of XBCQD in the treatment of COVID-19, which provided evidence and new insights for further research.


Asunto(s)
COVID-19 , Medicamentos Herbarios Chinos , Humanos , Simulación del Acoplamiento Molecular , Farmacología en Red , Simulación de Dinámica Molecular , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
7.
J Chem Phys ; 158(1): 014702, 2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36610967

RESUMEN

Ion transport in solids is a key topic in solid-state ionics. It is critical but challenging to understand the relationship between material structures and ion transport. Nanochannels in crystals provide ion transport pathways, which are responsible for the fast ion transport in fast lithium (Li)-ion conductors. The controlled synthesis of carbon nanotubes (CNTs) provides a promising approach to artificially regulating nanochannels. Herein, the CNTs with a diameter of 5.5 Å are predicted to exhibit an ultralow Li-ion diffusion barrier of about 10 meV, much lower than those in routine solid electrolyte materials. Such a characteristic is attributed to the similar chemical environment of a Li ion during its diffusion based on atomic and electronic structure analyses. The concerted diffusion of Li ions ensures high ionic conductivities of CNTs. These results not only reveal the immense potential of CNTs for fast Li-ion transport but also provide a new understanding for rationally designing solid materials with high ionic conductivities.

8.
BMC Surg ; 23(1): 258, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37644425

RESUMEN

BACKGROUND: The current study aimed to investigate the incidence and risk factors for postoperative acute ischemic stroke (PAIS) in advanced-aged patients (≥ 75 years) with previous ischemic stroke undergoing noncardiac surgery. METHODS: In this single-center retrospective cohort study, all advanced-aged patients underwent noncardiac surgery from 1 January, 2019, to 30 April, 2022. Data were extracted from hospital electronic medical records. Multivariable logistic regression analysis was performed to determine predictors of PAIS. Multivariable linear or logistic regression analysis was performed to determine predictors of outcomes due to PAIS. RESULTS: Twenty-four patients (6.0%) of the 400 patients developed PAIS. Carotid endarterectomy (CEA), length of surgery and preoperative Modified Rankin scale (mRS) ≥ 3 were significant predictors of PAIS. CEA was associated with increased risk of PAIS (OR 4.14; 95%CI, 1.43-11.99). Each additional minute in length of surgery had slightly increased the risk of PAIS (OR, 1.01; 95%CI, 1.00-1.01). Compared with reference (mRS < 3), mRS ≥ 3 increased odds of PAIS (OR, 4.09;95%CI, 1.12-14.93). Surgery type and length of surgery were found to be significant predictors of in-hospital expense (P < 0.001) and hospital stays (P < 0.05). CONCLUSIONS: CEA, length of surgery and preoperative mRS ≥ 3 may increase the development of PAIS in advanced-aged patients (≥ 75 years) with previous stroke undergoing noncardiac surgery. PAIS increased in-hospital mortality and prolonged hospital stay.


Asunto(s)
Endarterectomía Carotidea , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Anciano , Accidente Cerebrovascular Isquémico/epidemiología , Accidente Cerebrovascular Isquémico/etiología , Estudios Retrospectivos , Accidente Cerebrovascular/epidemiología , Accidente Cerebrovascular/etiología , Factores de Riesgo
9.
Sensors (Basel) ; 23(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36679469

RESUMEN

Lung cancer is the leading cause of cancer deaths worldwide. Although several lung cancer diagnostic methods are available for lung nodule biopsy, there are limitations in terms of accuracy, safety, and invasiveness. Transbronchial needle aspiration (TBNA) is a common method for diagnosing and treating lung cancer that involves a robot-assisted medical flexible needle moving along a curved three-dimensional trajectory, avoiding anatomical barriers to achieve clinically meaningful goals in humans. Inspired by the puncture angle between the needle tip and the vessel in venipuncture, we suggest that different orientations of the medical flexible needle puncture path affect the cost of the puncture trajectory and propose an effective puncture region based on the optimal puncture direction, which is a strategy based on imposing geometric constraints on the search space of the puncture direction, and based on this, we focused on the improved implementation of RCS*. Planning within the TBNA-based lung environment was performed using the rapidly exploring random tree (RRT), resolution-complete search (RCS), and RCS* (a resolution-optimal version of RCS) within an effective puncture region. The experimental results show that the optimal puncture direction corresponding to the lowest cost puncture trajectory is consistent among the three algorithms and RCS* is more efficient for planning. The experiments verified the feasibility and practicality of our proposed minimum puncture angle and puncture effective region and facilitated the study of the puncture direction of flexible needle puncture.


Asunto(s)
Neoplasias Pulmonares , Agujas , Humanos , Pulmón/patología , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/patología , Biopsia con Aguja Fina , Flebotomía
10.
Int Heart J ; 64(6): 979-985, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37967991

RESUMEN

Recently, the supra-normal left ventricular ejection fraction (snLVEF) has been proposed, based on extensive datasets indicating increased all-cause mortality in individuals with an LVEF exceeding 65%. However, the implications of an LVEF > 65% in the context of acute coronary syndrome (ACS) remain underexplored.The aim of the present study was to investigate the correlation between supra-normal left ventricular ejection fraction (snLVEF) and major adverse cardiovascular events (MACE) in patients with ACS.Methods: A total of 874 ACS patients (560 men, mean age 59.5 ± 10.0; 314 women, mean age 61.5 ± 8.9) who underwent their first coronary angiography during the period from March 2013 to October 2015 were divided into 2 groups: normal LVEF (nLVEF) (55% ≤ EF ≤ 65%) and snLVEF (EF > 65%), according to their echocardiography results. The patients were evaluated for MACE after surgery by collecting clinical data and long-term follow-up data. This correlation was further analyzed by Kaplan-Meier analysis and Cox regression analysis.The follow-up data revealed a significantly higher incidence of MACE among snLVEF patients compared to the nLVEF group (15.6% versus 7.4%; P = 0.020). This heightened risk persisted even after adjustment for multiple variables, indicating a strong association between snLVEF and increased MACE risk (HR: 2.346; 95% CI: 1.196-4.602; P = 0.013).SnLVEF was independently associated with poor prognosis after ACS. Enhanced management strategies for snLVEF patients could potentially reduce the incidence of MACE in ACS patients.


Asunto(s)
Síndrome Coronario Agudo , Función Ventricular Izquierda , Masculino , Humanos , Femenino , Persona de Mediana Edad , Anciano , Volumen Sistólico , Pronóstico , Análisis de Regresión
11.
Angew Chem Int Ed Engl ; 62(9): e202217514, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36622790

RESUMEN

Herein, a chemical pre-potassiation strategy via simultaneously treating both glucose derived carbon (GDC) anode and commercial activated carbon (CAC) cathode in potassium-naphthalene-tetrahydrofuran solution is developed for potassium ion hybrid capacitor (PIHC). Combined with in situ and ex situ characterizations, a radical reaction between pre-potassiation reagent and carbon electrodes is confirmed, which not only deactivates electrochemical irreversible sites, but also promotes to pre-form a uniform and dense KF-rich electrolyte film on the electrodes. As a result, the pre-potassiation treatment presents multiple advantages: (I) the initial Coulombic efficiency (CE) of the GDC anode increases from 45.4 % to 84.0 % with higher rate capability; (II) the CAC cathode exhibits the improved cycling CEs and stability due to the enhanced resistance to electrolyte oxidation at 4.2 V; (III) the assembled PIHC achieves a high energy density of 172.5 Wh kg-1 with cycling life over 10000 cycles.

12.
J Am Chem Soc ; 144(32): 14638-14646, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35791913

RESUMEN

Lithium-sulfur (Li-S) batteries have great potential as high-energy-density energy storage devices. Electrocatalysts are widely adopted to accelerate the cathodic sulfur redox kinetics. The interactions among the electrocatalysts, solvents, and lithium salts significantly determine the actual performance of working Li-S batteries. Herein, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), a commonly used lithium salt, is identified to aggravate surface gelation on the MoS2 electrocatalyst. In detail, the trifluoromethanesulfonyl group in LiTFSI interacts with the Lewis acidic sites on the MoS2 electrocatalyst to generate an electron-deficient center. The electron-deficient center with high Lewis acidity triggers cationic polymerization of the 1,3-dioxolane solvent and generates a surface gel layer that reduces the electrocatalytic activity. To address the above issue, Lewis basic salt lithium iodide (LiI) is introduced to block the interaction between LiTFSI and MoS2 and inhibit the surface gelation. Consequently, the Li-S batteries with the MoS2 electrocatalyst and the LiI additive realize an ultrahigh actual energy density of 416 W h kg-1 at the pouch cell level. This work affords an effective lithium salt to boost the electrocatalytic activity in practical working Li-S batteries and deepens the fundamental understanding of the interactions among electrocatalysts, solvents, and salts in energy storage systems.

13.
Soft Matter ; 18(42): 8188-8193, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36268983

RESUMEN

In this paper, two types of polymer-stabilized blue-phase liquid crystals (PS-BPLCs) with different monomers were designed and prepared. The morphology, temperature range and electro-optical properties of the blue phases were studied and discussed. The temperature range of both types of PS-BPLC is greater than 110 °C, and both samples can be stabilized well at room temperature. The organosilicone monomer 3-methacryloxypropyltrimethoxysilane (KH570), which contains double bonds, was introduced to a blue-phase system for the first time. Regarding the electro-optical performance, the on-state voltage of the PS-BPLCs with the KH570 monomer is reduced to 30 V compared with traditional C12A monomer systems in which the on-state voltage is 75 V at 458 nm. Meanwhile, a fast response and suppressed hysteresis are obtained. These results are helpful to the application of displays and photonic devices.

14.
Nanotechnology ; 33(22)2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35147516

RESUMEN

The on-chip avalanche photodiodes (APDs) are crucial component of a fully integrated photonics system. Specifically, III-V compound APD has become one of the main applications of optical fiber communication reception due to adaptable bandgap and low noise characteristics. The advancement of structural design and material choice has emerged as a means to improve the performance of APDs. Therefore, it is inevitable to review the evolution and recent developments on III-V compound APDs to understand the current progress in this field. To begin with, the basic working principle of APDs are presented. Next, the structure development of APDs is briefly reviewed, and the subsequent progression of III-V compound APDs (InGaAs APDs, AlxIn1-xAsySb1-yAPDs) is introduced. Finally, we also discuss the key issues and prospects of AlxIn1-xAsySb1-ydigital alloy avalanche APDs that need to be addressed for the future development of ≥2µm optical communication field.

15.
Nanotechnology ; 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35144248

RESUMEN

The on-chip avalanche photodiodes (APDs) are crucial component of a fully integrated photonics system. Specifically, III-V compound APD has become one of the main applications of optical fiber communication reception due to adaptable bandgap and low noise characteristics. The advancement of structural design and material choice has emerged as a means to improve the performance of APDs.Therefore, it is inevitable to review the evolution and recent developments on III-V compound APDs to understand the current progress in this field. To begin with, the basic working principle of APDs are presented. Next, the structure development of APDs is briefly reviewed, and the subsequent progression of III-V compound APDs (InGaAs APDs, AlxIn1-xAsySb1-y APDs) is introduced. Finally, we also discuss the key issues and prospects of AlxIn1-xAsySb1-y digital alloy avalanche APDs that need to be addressed for the future development of ≥2µm optical communication field.

16.
Int J Med Sci ; 19(8): 1227-1234, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35928725

RESUMEN

Background: Although vascular risk factors have been found to be closely related to the development of benign paroxysmal positional vertigo (BPPV), the relationship between BPPV and cerebral small vessels diseases (CSVDs) has rarely been discussed in literature. This study set out to investigate the efficacy of repositioning therapy and prognosis among BPPV patients with CSVDs. Methods: We enrolled 553 BPPV patients who had undergone brain MRI, and categorized them into two groups based on the presence or absence of CSVDs. After controlling for other confounders using a propensity score matching (PSM) approach, we compared the incidence of recurrence and residual dizziness (RD). Then, we analyzed the recurrence rate and RD incidence in 176 BPPV patients with CSVDs, and assessed potential risk factors. Results: White matter hyperintensity (WMH, 72.2%) and lacunar infarction (LI, 65.9%) were the two CSVDs that were present in the highest proportion among the BPPV patients. The incidence of RD in patients with CSVDs was significantly higher compared to subjects without CSVDs. Patients with RD (n=100, 56.8%) were older, had more severe WMH, and had a higher incidence of brain atrophy; age and higher Fazekas score were independent risk factors. Among the recurrent patients (n=61, 34.7%), the ages were older, the Fazekas score of WMH was higher, and number of LIs was increased; age was the sole independent risk factor. Conclusion: BPPV patients with a combination of CSVD comorbidities, especially elderly patients with WMHs, are more likely to develop RD, which needs to be paid more attention.


Asunto(s)
Vértigo Posicional Paroxístico Benigno , Enfermedades de los Pequeños Vasos Cerebrales , Anciano , Vértigo Posicional Paroxístico Benigno/diagnóstico , Vértigo Posicional Paroxístico Benigno/epidemiología , Vértigo Posicional Paroxístico Benigno/terapia , Enfermedades de los Pequeños Vasos Cerebrales/complicaciones , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagen , Enfermedades de los Pequeños Vasos Cerebrales/epidemiología , Mareo/complicaciones , Mareo/terapia , Humanos , Posicionamiento del Paciente , Pronóstico , Estudios Retrospectivos
17.
Molecules ; 27(19)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36235000

RESUMEN

Echinacea purpurea (EP) is a common medicinal material for extracting anti-RSV components. However, up to now, there has been no effective and simple method to comprehensively reflect the quality of EP. In our current study, the quality of Echinacea purpurea (L.) Moench samples from six different cultivation locations in China was evaluated by establishing a high-performance liquid chromatography (HPLC) fingerprint, combining chemical pattern recognition and multi-component determination. In this study, the chemical fingerprints of 15 common peaks were obtained using the similarity evaluation system of the chromatographic fingerprints of traditional Chinese medicine (2012A Edition). Among the 15 components, three phenolic acids (caftaric acid, chlorogenic acid and cichoric acid) were identified and determined. The similarity of fingerprints of 16 batches of Echinacea purpurea (L.) Moench samples ranged from 0.905 to 0.998. The similarity between fingerprints of five batches of commercially available Echinacea pupurea (L.) Moench and the standard fingerprint "R" ranged from 0.980 to 0.997, which proved the successful establishment of the fingerprint. PCA and HCA were performed with the relative peak areas of 15 common peaks (peak 3 as the reference peak) as variables. Anhui and Shaanxi can be successfully distinguished from the other four cultivation areas. In addition, the index components of caftaric acid, chlorogenic acid and cichoric acid were in the range of 1.77-8.60 mg/g, 0.02-0.20 mg/g and 2.27-15.87 mg/g. The results of multi-component index content determination show that the contents of the Shandong cultivation area were higher, followed by Gansu, Henan and Hebei, and the lowest were Anhui and Shaanxi. The results are consistent with PCA and HCA, which proved that the quality of Echinacea purpurea (L.) Moench from different origins was different. HPLC fingerprint combined with chemical pattern recognition and multi-component content determination was a reliable, comprehensive and prospective method for evaluating the quality of Echinacea purpurea (L.) Moench. This method provides a scientific basis for the quality control and evaluation of Echinacea purpurea (L.) Moench.


Asunto(s)
Echinacea , Ácidos Cafeicos , Ácido Clorogénico/análisis , Cromatografía Líquida de Alta Presión/métodos , Echinacea/química , Fenoles , Extractos Vegetales/química , Succinatos
18.
Angew Chem Int Ed Engl ; 61(7): e202114671, 2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-34889012

RESUMEN

Lithium-sulfur (Li-S) batteries are deemed as future energy storage devices due to ultrahigh theoretical energy density. Cathodic polysulfide electrocatalysts have been widely investigated to promote sluggish sulfur redox kinetics. Probing the surface structure of electrocatalysts is vital to understanding the mechanism of polysulfide electrocatalysis. In this work, we for the first time identify surface gelation on disulfide electrocatalysts. Concretely, the Lewis acid sites on disulfides trigger the ring-opening polymerization of the dioxolane solvent to generate a surface gel layer, covering disulfides and reducing the electrocatalytic activity. Accordingly, a Lewis base triethylamine (TEA) is introduced as a competitive inhibitor. Consequently, Li-S batteries with disulfide electrocatalysts and TEA afford high specific capacity and improved rate responses. This work affords new insights on the actual surface structure of electrocatalysts in Li-S batteries.

19.
Angew Chem Int Ed Engl ; 61(52): e202211448, 2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36314993

RESUMEN

Lithium-sulfur (Li-S) battery is strongly considered as one of the most promising energy storage systems due to its high theoretical energy density and low cost. However, the sluggish reduction kinetics from Li2 S4 to Li2 S during discharge hinders the practical application of Li-S batteries. Although various electrocatalysts have been proposed to improve the reaction kinetics, the electrocatalytic mechanism is unclear due to the complexity of sulfur reduction reactions (SRR). It is crucial to understand the electrocatalytic mechanism thoroughly for designing advanced electrocatalysts. Herein an electrocatalytic model is constructed to reveal the chemical mechanism of the SRR in Li-S batteries based on systematical density functional theory calculations, taking heteroatoms-doped carbon materials as an example. The adsorption energy of LiSy ⋅ (y=1, 2, or 3) radicals is used as a key descriptor to predict the reaction pathway, rate-determining step, and overpotential. A diagram for designing advanced electrocatalysts is accordingly constructed. This work establishes a theoretical model, which is an intelligent integration for probing the complicated SRR mechanisms and designing advanced electrocatalysts for high-performance Li-S batteries.

20.
Opt Express ; 29(21): 33572-33581, 2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34809167

RESUMEN

Circular dichroism (CD), as one of the most representative chiroptical effects, provides a simple strategy for the detection and characterization of the molecular chirality. The enhancement and sign reversal of CD are of great importance for its practical applications in chiral bio-sensing, chirality switching and optical filtering, etc. Here, we realize considerable adjustments and the sign reversal of CD in quasi-three-dimensional (quasi-3D) combined Archimedean spiral nanostructures. With special local and lattice configurations, the nanostructures have both right-handed and left-handed geometric chirality, which are designed based on the proximity effect of stencil lithography. We find that the CD response of the nanostructures becomes obvious once its height exceeds 200 nm and can be adjusted by the further increase of the height or the change of the blade spacing of the nanostructures. The CD reversal is achieved by utilizing the competition of two chiral centers when the height or blade spacing exceeds a critical value. Further analysis of the scattering power of multipole moments reveals that the CD modulation is determined by both magnetic dipole moment and electric quadrupole moment. Benefiting from the highly sensitive CD response to the height, the extreme sign reversal of CD is achieved when a sub-10-nm ultrathin medium layer is anchored on the surface of the nanostructures, which provides a promising strategy for ultra-sensitive chiral bio-sensing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA