Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 193
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Nature ; 628(8008): 630-638, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38538795

RESUMEN

Lysosomes are degradation and signalling centres crucial for homeostasis, development and ageing1. To meet diverse cellular demands, lysosomes remodel their morphology and function through constant fusion and fission2,3. Little is known about the molecular basis of fission. Here we identify HPO-27, a conserved HEAT repeat protein, as a lysosome scission factor in Caenorhabditis elegans. Loss of HPO-27 impairs lysosome fission and leads to an excessive tubular network that ultimately collapses. HPO-27 and its human homologue MROH1 are recruited to lysosomes by RAB-7 and enriched at scission sites. Super-resolution imaging, negative-staining electron microscopy and in vitro reconstitution assays reveal that HPO-27 and MROH1 self-assemble to mediate the constriction and scission of lysosomal tubules in worms and mammalian cells, respectively, and assemble to sever supported membrane tubes in vitro. Loss of HPO-27 affects lysosomal morphology, integrity and degradation activity, which impairs animal development and longevity. Thus, HPO-27 and MROH1 act as self-assembling scission factors to maintain lysosomal homeostasis and function.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Lisosomas , Animales , Humanos , Caenorhabditis elegans/citología , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/ultraestructura , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/ultraestructura , Homeostasis , Longevidad , Lisosomas/metabolismo , Lisosomas/ultraestructura , Secuencias de Aminoácidos , Microscopía Electrónica
2.
EMBO J ; 43(13): 2606-2635, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38806659

RESUMEN

Microtubule-based kinesin motor proteins are crucial for intracellular transport, but their hyperactivation can be detrimental for cellular functions. This study investigated the impact of a constitutively active ciliary kinesin mutant, OSM-3CA, on sensory cilia in C. elegans. Surprisingly, we found that OSM-3CA was absent from cilia but underwent disposal through membrane abscission at the tips of aberrant neurites. Neighboring glial cells engulf and eliminate the released OSM-3CA, a process that depends on the engulfment receptor CED-1. Through genetic suppressor screens, we identified intragenic mutations in the OSM-3CA motor domain and mutations inhibiting the ciliary kinase DYF-5, both of which restored normal cilia in OSM-3CA-expressing animals. We showed that conformational changes in OSM-3CA prevent its entry into cilia, and OSM-3CA disposal requires its hyperactivity. Finally, we provide evidence that neurons also dispose of hyperactive kinesin-1 resulting from a clinic variant associated with amyotrophic lateral sclerosis, suggesting a widespread mechanism for regulating hyperactive kinesins.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Cilios , Cinesinas , Neuroglía , Animales , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Cinesinas/metabolismo , Cinesinas/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Neuroglía/metabolismo , Cilios/metabolismo , Neuronas/metabolismo , Mutación , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología
3.
Proc Natl Acad Sci U S A ; 121(5): e2311936121, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38271337

RESUMEN

KIF1A, a microtubule-based motor protein responsible for axonal transport, is linked to a group of neurological disorders known as KIF1A-associated neurological disorder (KAND). Current therapeutic options for KAND are limited. Here, we introduced the clinically relevant KIF1A(R11Q) variant into the Caenorhabditis elegans homolog UNC-104, resulting in uncoordinated animal behaviors. Through genetic suppressor screens, we identified intragenic mutations in UNC-104's motor domain that rescued synaptic vesicle localization and coordinated movement. We showed that two suppressor mutations partially recovered motor activity in vitro by counteracting the structural defect caused by R11Q at KIF1A's nucleotide-binding pocket. We found that supplementation with fisetin, a plant flavonol, improved KIF1A(R11Q) worms' movement and morphology. Notably, our biochemical and single-molecule assays revealed that fisetin directly restored the ATPase activity and processive movement of human KIF1A(R11Q) without affecting wild-type KIF1A. These findings suggest fisetin as a potential intervention for enhancing KIF1A(R11Q) activity and alleviating associated defects in KAND.


Asunto(s)
Cinesinas , Vesículas Sinápticas , Animales , Humanos , Cinesinas/metabolismo , Vesículas Sinápticas/metabolismo , Neuronas/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Mutación
4.
Chem Rev ; 124(13): 8307-8472, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38924776

RESUMEN

Due to the intrinsic non-invasive nature, cost-effectiveness, high safety, and real-time capabilities, besides diagnostic imaging, ultrasound as a typical mechanical wave has been extensively developed as a physical tool for versatile biomedical applications. Especially, the prosperity of nanotechnology and nanomedicine invigorates the landscape of ultrasound-based medicine. The unprecedented surge in research enthusiasm and dedicated efforts have led to a mass of multifunctional micro-/nanosystems being applied in ultrasound biomedicine, facilitating precise diagnosis, effective treatment, and personalized theranostics. The effective deployment of versatile ultrasound-based micro-/nanosystems in biomedical applications is rooted in a profound understanding of the relationship among composition, structure, property, bioactivity, application, and performance. In this comprehensive review, we elaborate on the general principles regarding the design, synthesis, functionalization, and optimization of ultrasound-based micro-/nanosystems for abundant biomedical applications. In particular, recent advancements in ultrasound-based micro-/nanosystems for diagnostic imaging are meticulously summarized. Furthermore, we systematically elucidate state-of-the-art studies concerning recent progress in ultrasound-based micro-/nanosystems for therapeutic applications targeting various pathological abnormalities including cancer, bacterial infection, brain diseases, cardiovascular diseases, and metabolic diseases. Finally, we conclude and provide an outlook on this research field with an in-depth discussion of the challenges faced and future developments for further extensive clinical translation and application.


Asunto(s)
Neoplasias , Humanos , Animales , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Ultrasonografía/métodos , Nanomedicina/métodos , Nanotecnología/métodos
5.
J Immunol ; 212(7): 1244-1253, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38334457

RESUMEN

A variety of commercial platforms are available for the simultaneous detection of multiple cytokines and associated proteins, often employing Ab pairs to capture and detect target proteins. In this study, we comprehensively evaluated the performance of three distinct platforms: the fluorescent bead-based Luminex assay, the proximity extension-based Olink assay, and a novel proximity ligation assay platform known as Alamar NULISAseq. These assessments were conducted on human serum samples from the National Institutes of Health IMPACC study, with a focus on three essential performance metrics: detectability, correlation, and differential expression. Our results reveal several key findings. First, the Alamar platform demonstrated the highest overall detectability, followed by Olink and then Luminex. Second, the correlation of protein measurements between the Alamar and Olink platforms tended to be stronger than the correlation of either of these platforms with Luminex. Third, we observed that detectability differences across the platforms often translated to differences in differential expression findings, although high detectability did not guarantee the ability to identify meaningful biological differences. Our study provides valuable insights into the comparative performance of these assays, enhancing our understanding of their strengths and limitations when assessing complex biological samples, as exemplified by the sera from this COVID-19 cohort.


Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico , Inmunoensayo/métodos , Citocinas/metabolismo , Suero/metabolismo
6.
FASEB J ; 38(13): e23788, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38963329

RESUMEN

Intermittent hypoxia (IH) is an independent risk factor for metabolic dysfunction-associated fatty liver disease (MAFLD). Copper deficiency can disrupt redox homeostasis, iron, and lipid metabolism. Here, we investigated whether hepatic copper deficiency plays a role in IH-associated MAFLD and explored the underlying mechanism(s). Male C57BL/6 mice were fed a western-type diet with adequate copper (CuA) or marginally deficient copper (CuD) and were exposed separately to room air (RA) or IH. Hepatic histology, plasma biomarkers, copper-iron status, and oxidative stress were assessed. An in vitro HepG2 cell lipotoxicity model and proteomic analysis were used to elucidate the specific targets involved. We observed that there were no differences in hepatic phenotypes between CuA-fed and CuD-fed mice under RA. However, in IH exposure, CuD-fed mice showed more pronounced hepatic steatosis, liver injury, and oxidative stress than CuA-fed mice. IH induced copper accumulation in the brain and heart and exacerbated hepatic copper deficiency and secondary iron deposition. In vitro, CuD-treated cells with IH exposure showed elevated levels of lipid accumulation, oxidative stress, and ferroptosis susceptibility. Proteomic analysis identified 360 upregulated and 359 downregulated differentially expressed proteins between CuA and CuD groups under IH; these proteins were mainly enriched in citrate cycle, oxidative phosphorylation, fatty acid metabolism, the peroxisome proliferator-activated receptor (PPAR)α pathway, and ferroptosis. In IH exposure, CuD significantly upregulated the ferroptosis-promoting factor arachidonyl-CoA synthetase long chain family member (ACSL)4. ACSL4 knockdown markedly eliminated CuD-induced ferroptosis and lipid accumulation in IH exposure. In conculsion, IH can lead to reduced hepatic copper reserves and secondary iron deposition, thereby inducing ferroptosis and subsequent MAFLD progression. Insufficient dietary copper may worsen IH-associated MAFLD.


Asunto(s)
Cobre , Ferroptosis , Hipoxia , Ratones Endogámicos C57BL , Animales , Cobre/metabolismo , Cobre/deficiencia , Masculino , Ratones , Hipoxia/metabolismo , Humanos , Células Hep G2 , Hígado/metabolismo , Hígado/patología , Estrés Oxidativo , Metabolismo de los Lípidos , Hígado Graso/metabolismo , Hígado Graso/patología , Hígado Graso/etiología , Hierro/metabolismo , Coenzima A Ligasas/metabolismo , Coenzima A Ligasas/genética , PPAR alfa/metabolismo , PPAR alfa/genética
7.
Arterioscler Thromb Vasc Biol ; 44(7): 1628-1645, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38813696

RESUMEN

BACKGROUND: Pericoronary epicardial adipose tissue (EAT) is a unique visceral fat depot that surrounds the adventitia of the coronary arteries without any anatomic barrier. Clinical studies have demonstrated the association between EAT volume and increased risks for coronary artery disease (CAD). However, the cellular and molecular mechanisms underlying the association remain elusive. METHODS: We performed single-nucleus RNA sequencing on pericoronary EAT samples collected from 3 groups of subjects: patients undergoing coronary bypass surgery for severe CAD (n=8), patients with CAD with concomitant type 2 diabetes (n=8), and patients with valvular diseases but without concomitant CAD and type 2 diabetes as the control group (n=8). Comparative analyses were performed among groups, including cellular compositional analysis, cell type-resolved transcriptomic changes, gene coexpression network analysis, and intercellular communication analysis. Immunofluorescence staining was performed to confirm the presence of CAD-associated subclusters. RESULTS: Unsupervised clustering of 73 386 nuclei identified 15 clusters, encompassing all known cell types in the adipose tissue. Distinct subpopulations were identified within primary cell types, including adipocytes, adipose stem and progenitor cells, and macrophages. CD83high macrophages and FOSBhigh adipocytes were significantly expanded in CAD. In comparison to normal controls, both disease groups exhibited dysregulated pathways and altered secretome in the primary cell types. Nevertheless, minimal differences were noted between the disease groups in terms of cellular composition and transcriptome. In addition, our data highlight a potential interplay between dysregulated circadian clock and altered physiological functions in adipocytes of pericoronary EAT. ANXA1 (annexin A1) and SEMA3B (semaphorin 3B) were identified as important adipokines potentially involved in functional changes of pericoronary EAT and CAD pathogenesis. CONCLUSIONS: We built a complete single-nucleus transcriptomic atlas of human pericoronary EAT in normal and diseased conditions of CAD. Our study lays the foundation for developing novel therapeutic strategies for treating CAD by targeting and modifying pericoronary EAT functions.


Asunto(s)
Tejido Adiposo , Enfermedad de la Arteria Coronaria , Pericardio , Transcriptoma , Humanos , Pericardio/metabolismo , Pericardio/patología , Femenino , Masculino , Persona de Mediana Edad , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/patología , Enfermedad de la Arteria Coronaria/metabolismo , Anciano , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Adipocitos/metabolismo , Adipocitos/patología , Enfermedades de las Válvulas Cardíacas/genética , Enfermedades de las Válvulas Cardíacas/patología , Enfermedades de las Válvulas Cardíacas/metabolismo , Enfermedades de las Válvulas Cardíacas/cirugía , Perfilación de la Expresión Génica/métodos , Estudios de Casos y Controles , Puente de Arteria Coronaria , Análisis de la Célula Individual , Macrófagos/metabolismo , Macrófagos/patología , Redes Reguladoras de Genes , Tejido Adiposo Epicárdico
8.
Drug Resist Updat ; 73: 101052, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38262246

RESUMEN

AIMS: This investigation aims to elucidate the mechanism underlying sorafenib-induced ferroptosis in hepatocellular carcinoma (HCC). METHODS: The role of dual specificity phosphatase 4 (DUSP4) in sorafenib-treated HCC was investigated using comprehensive assessments both in vitro and in vivo, including Western blotting, qRT-PCR, cell viability assay, lipid reactive oxygen species (ROS) assay, immunohistochemistry, and xenograft tumor mouse model. Additionally, label-free quantitative proteomics was employed to identify potential proteins associated with DUSP4. RESULTS: Our study revealed that suppression of DUSP4 expression heightens the susceptibility of HCC cells to ferroptosis inducers, specifically sorafenib and erastin, in both in vitro and in vivo settings. Furthermore, we identified DUSP4-mediated regulation of key ferroptosis-related markers, such as ferritin light chain (FTL) and ferritin heavy chain 1 (FTH1). Notably, label-free quantitative proteomics unveiled the phosphorylation of threonine residue T148 on YTH Domain Containing 1 (YTHDC1) by DUSP4. Further investigations unraveled that YTHDC1, functioning as an mRNA nuclear export regulator, is a direct target of DUSP4, orchestrating the subcellular localization of FTL and FTH1 mRNAs. Significantly, our study highlights a strong correlation between elevated DUSP4 expression and sorafenib resistance in HCC. CONCLUSIONS: Our findings introduce DUSP4 as a negative regulator of sorafenib-induced ferroptosis. This discovery opens new avenues for the development of ferroptosis-based therapeutic strategies tailored for HCC treatment.


Asunto(s)
Carcinoma Hepatocelular , Fosfatasas de Especificidad Dual , Ferroptosis , Neoplasias Hepáticas , Animales , Humanos , Ratones , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Línea Celular Tumoral , Ferroptosis/genética , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Monoéster Fosfórico Hidrolasas/uso terapéutico , Sorafenib/farmacología , Sorafenib/uso terapéutico , Fosfatasas de Especificidad Dual/genética , Fosfatasas de Especificidad Dual/metabolismo , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/genética , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/metabolismo
9.
Chem Soc Rev ; 53(3): 1167-1315, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38168612

RESUMEN

The invention of silica-based bioactive glass in the late 1960s has sparked significant interest in exploring a wide range of silicon-containing biomaterials from the macroscale to the nanoscale. Over the past few decades, these biomaterials have been extensively explored for their potential in diverse biomedical applications, considering their remarkable bioactivity, excellent biocompatibility, facile surface functionalization, controllable synthesis, etc. However, to expedite the clinical translation and the unexpected utilization of silicon-composed nanomedicine and biomaterials, it is highly desirable to achieve a thorough comprehension of their characteristics and biological effects from an overall perspective. In this review, we provide a comprehensive discussion on the state-of-the-art progress of silicon-composed biomaterials, including their classification, characteristics, fabrication methods, and versatile biomedical applications. Additionally, we highlight the multi-dimensional design of both pure and hybrid silicon-composed nanomedicine and biomaterials and their intrinsic biological effects and interactions with biological systems. Their extensive biomedical applications span from drug delivery and bioimaging to therapeutic interventions and regenerative medicine, showcasing the significance of their rational design and fabrication to meet specific requirements and optimize their theranostic performance. Additionally, we offer insights into the future prospects and potential challenges regarding silicon-composed nanomedicine and biomaterials. By shedding light on these exciting research advances, we aspire to foster further progress in the biomedical field and drive the development of innovative silicon-composed nanomedicine and biomaterials with transformative applications in biomedicine.


Asunto(s)
Nanomedicina , Silicio , Nanomedicina/métodos , Dióxido de Silicio , Sistemas de Liberación de Medicamentos , Materiales Biocompatibles
10.
Chem Soc Rev ; 53(16): 8306-8378, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39005165

RESUMEN

As natural living substances, microorganisms have emerged as useful resources in medicine for creating microbe-material hybrids ranging from nano to macro dimensions. The engineering of microbe-involved nanomedicine capitalizes on the distinctive physiological attributes of microbes, particularly their intrinsic "living" properties such as hypoxia tendency and oxygen production capabilities. Exploiting these remarkable characteristics in combination with other functional materials or molecules enables synergistic enhancements that hold tremendous promise for improved drug delivery, site-specific therapy, and enhanced monitoring of treatment outcomes, presenting substantial opportunities for amplifying the efficacy of disease treatments. This comprehensive review outlines the microorganisms and microbial derivatives used in biomedicine and their specific advantages for therapeutic application. In addition, we delineate the fundamental strategies and mechanisms employed for constructing microbe-material hybrids. The diverse biomedical applications of the constructed microbe-material hybrids, encompassing bioimaging, anti-tumor, anti-bacteria, anti-inflammation and other diseases therapy are exhaustively illustrated. We also discuss the current challenges and prospects associated with the clinical translation of microbe-material hybrid platforms. Therefore, the unique versatility and potential exhibited by microbe-material hybrids position them as promising candidates for the development of next-generation nanomedicine and biomaterials with unique theranostic properties and functionalities.


Asunto(s)
Bacterias , Humanos , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Animales , Neoplasias/tratamiento farmacológico , Antibacterianos/farmacología , Antibacterianos/química , Nanomedicina , Antineoplásicos/química , Antineoplásicos/farmacología , Sistemas de Liberación de Medicamentos
11.
Nano Lett ; 24(5): 1792-1800, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38278136

RESUMEN

A comprehensive approach for the construction of NIR-I/NIR-II nanofluorophores with exceptional brightness and excellent chemo- and photostability has been developed. This study first confirmed that the amphiphilic molecules with stronger hydrophobic moieties and weaker hydrophilic moieties are superior candidates for constructing brighter nanofluorophores, which are attributed to its higher efficiency in suppressing the intramolecular charge transfer/aggregation-caused fluorescence quenching of donor-acceptor-donor type fluorophores. The prepared nanofluorophore demonstrates a fluorescence quantum yield exceeding 4.5% in aqueous solution and exhibits a strong NIR-II tail emission up to 1300 nm. The superior performance of the nanofluorophore enabled the achievement of high-resolution whole-body vessel imaging and brain vessel imaging, as well as high-contrast fluorescence imaging of the lymphatic system in vivo. Furthermore, their potential for highly sensitive fluorescence detection of tiny tumors in vivo has been successfully confirmed, thus supporting their future applications in precise fluorescence imaging-guided surgery in the early stages of cancer.


Asunto(s)
Neoplasias , Humanos , Neoplasias/patología , Colorantes Fluorescentes/química , Imagen Óptica/métodos , Espectroscopía Infrarroja Corta/métodos
12.
J Am Chem Soc ; 146(12): 8228-8241, 2024 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-38471004

RESUMEN

It remains a tremendous challenge to explore effective therapeutic modalities against neuroblastoma, a lethal cancer of the sympathetic nervous system with poor prognosis and disappointing treatment outcomes. Considering the limitations of conventional treatment modalities and the intrinsic vulnerability of neuroblastoma, we herein develop a pioneering sequential catalytic therapeutic system that utilizes lactate oxidase (LOx)/horseradish peroxidase (HRP)-loaded amorphous zinc metal-organic framework, named LOx/HRP-aZIF, in combination with a 3-indole-acetic acid (IAA) prodrug. On the basis of abnormal lactate accumulation that occurs in the tumor microenvironment, the cascade reaction of LOx and HRP consumes endogenous glutathione and a reduced form of nicotinamide adenine dinucleotide to achieve the first stage of killing cancer cells via antioxidative incapacitation and electron transport chain interference. Furthermore, the generation of reactive oxygen species induced by HRP and IAA through bioorthogonal catalysis promotes ferritin degradation and lipid peroxidation, ultimately provoking self-enhanced ferroptosis with positive feedback by initiating an endogenous Fenton reaction. This work highlights the superiority of the natural enzyme-dependent cascade and bioorthogonal catalytic reaction, offering a paradigm for synergistically enzyme-based metabolism-ferroptosis anticancer therapy.


Asunto(s)
Ferroptosis , Neoplasias , Neuroblastoma , Humanos , Antioxidantes/farmacología , Peroxidasa de Rábano Silvestre/metabolismo , Catálisis , Línea Celular Tumoral , Microambiente Tumoral
13.
BMC Med ; 22(1): 19, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38191448

RESUMEN

BACKGROUND: The benefits of first-line, cisplatin-based chemotherapy for muscle-invasive bladder cancer are limited due to intrinsic or acquired resistance to cisplatin. Increasing evidence has revealed the implication of cancer stem cells in the development of chemoresistance. However, the underlying molecular mechanisms remain to be elucidated. This study investigates the role of LASS2, a ceramide synthase, in regulating Wnt/ß-catenin signaling in a subset of stem-like bladder cancer cells and explores strategies to sensitize bladder cancer to cisplatin treatment. METHODS: Data from cohorts of our center and published datasets were used to evaluate the clinical characteristics of LASS2. Flow cytometry was used to sort and analyze bladder cancer stem cells (BCSCs). Tumor sphere formation, soft agar colony formation assay, EdU assay, apoptosis analysis, cell viability, and cisplatin sensitivity assay were used to investigate the functional roles of LASS2. Immunofluorescence, immunoblotting, coimmunoprecipitation, LC-MS, PCR array, luciferase reporter assays, pathway reporter array, chromatin immunoprecipitation, gain-of-function, and loss-of-function approaches were used to investigate the underlying mechanisms. Cell- and patient-derived xenograft models were used to investigate the effect of LASS2 overexpression and a combination of XAV939 on cisplatin sensitization and tumor growth. RESULTS: Patients with low expression of LASS2 have a poorer response to cisplatin-based chemotherapy. Loss of LASS2 confers a stem-like phenotype and contributes to cisplatin resistance. Overexpression of LASS2 results in inhibition of self-renewal ability of BCSCs and increased their sensitivity to cisplatin. Mechanistically, LASS2 inhibits PP2A activity and dissociates PP2A from ß-catenin, preventing the dephosphorylation of ß-catenin and leading to the accumulation of cytosolic phospho-ß-catenin, which decreases the transcription of the downstream genes ABCC2 and CD44 in BCSCs. Overexpression of LASS2 combined with a tankyrase inhibitor (XAV939) synergistically inhibits tumor growth and restores cisplatin sensitivity. CONCLUSIONS: Targeting the LASS2 and ß-catenin pathways may be an effective strategy to overcome cisplatin resistance and inhibit tumor growth in bladder cancer patients.


Asunto(s)
Cisplatino , Esfingosina N-Aciltransferasa , Neoplasias de la Vejiga Urinaria , Humanos , Apoptosis , beta Catenina , Cisplatino/farmacología , Cisplatino/uso terapéutico , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Animales , Esfingosina N-Aciltransferasa/metabolismo
14.
Small ; : e2401171, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847567

RESUMEN

The post-surgical melanoma recurrence and wound infections have persistently troubled clinical management. Piezocatalytic therapy features high efficiency in generating reactive oxygen species (ROS) for tumor therapy, but it faces limitations in piezoelectricity and redox-active site availability. Herein, Fe-doped ultrathin Bi4Ti3O12 nanosheets (designated as Fe-UBTO NSs) with synergistically piezo-chemocatalytic activity are engineered for antitumor and antibacterial treatment against cutaneous melanoma. The doping-engineered strategy induces oxygen vacancies and lattice distortions in Fe-UBTO NSs, which narrows bandgap to enhance piezocatalytic 1O2 and H2O2 generation by improving the electron-hole pairs separation, hindering their recombination, and increasing oxygen adsorption. Moreover, Fe doping establishes a piezo-chemocatalytic system, in which the piezocatalysis enables the self-supply of H2O2 and expedites electron transfer in Fenton reactions, inducing increased ·OH production. Besides, the atomic-level thickness and expanded surface area enhance the sensitivity to ultrasound stimuli and expose more redox-active sites, augmenting the piezo-chemocatalytic efficiency, and ultimately leading to abundant ROS generation. The Fe-UBTO-mediated piezo-chemocatalytic therapy causes intracellular oxidative stress, triggering apoptosis and excessive autophagy of tumor cells. Moreover, this strategy accelerates wound healing by facilitating sterilization, angiogenesis, and collagen deposition. This work provides distinct options to develop doping-engineered ultrathin nanosheets with augmented piezo-chemocatalytic activity for postoperative management of cutaneous melanoma.

15.
Small ; 20(26): e2310604, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38329190

RESUMEN

Nanoparticle-based drug delivery strategies have emerged as a crucial avenue for comprehensive sensorineural hearing loss treatment. Nevertheless, developing therapy vectors crossing both biological and cellular barriers has encountered significant challenges deriving from various external factors. Herein, the rational integration of gelatin nanoparticles (GNPs) with tetrahedral DNA nanostructures (TDNs) to engineer a distinct drug-delivery nanosystem (designed as TDN@GNP) efficiently enhances the biological permeability and cellular internalization, further resolving the dilemma of noise-induced hearing loss via loading epigallocatechin gallate (EGCG) with anti-lipid peroxidation property. Rationally engineering of TDN@GNP demonstrates dramatic alterations in the physicochemical key parameters of TDNs that are pivotal in cell-particle interactions and promote cellular uptake through multiple endocytic pathways. Furthermore, the EGCG-loaded nanosystem (TDN-EGCG@GNP) facilitates efficient inner ear drug delivery by superior permeability through the biological barrier (round window membrane), maintaining high drug concentration within the inner ear. The TDN-EGCG@GNP actively overcomes the cell membrane, exhibiting hearing protection from noise insults via reduced lipid peroxidation in outer hair cells and spiral ganglion neurons. This work exemplifies how integrating diverse vector functionalities can overcome biological and cellular barriers in the inner ear, offering promising applications for inner ear disorders.


Asunto(s)
Catequina , ADN , Gelatina , Pérdida Auditiva Provocada por Ruido , Nanoestructuras , Gelatina/química , ADN/química , ADN/metabolismo , Pérdida Auditiva Provocada por Ruido/metabolismo , Pérdida Auditiva Provocada por Ruido/tratamiento farmacológico , Animales , Nanoestructuras/química , Catequina/análogos & derivados , Catequina/química , Catequina/farmacología , Ratones , Peroxidación de Lípido/efectos de los fármacos , Nanopartículas/química , Sistemas de Liberación de Medicamentos
16.
Small ; : e2403062, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940238

RESUMEN

Aqueous Zn-ion batteries (ZIBs) are considered to be one of the most promising energy storage devices in the post-lithium-ion era with fast ionic conductivity, safety, and low cost. However, excessive accumulation of zinc dendrites will fracture and produce dead zinc, resulting in the unsatisfied utilization rate of Zn anodes, which greatly restricts the lifespan of the battery and reduces the reversibility. In this paper, by constructing a protective layer of ZnSnO3 hollow nanospheres in situ growth on the surface of the Zn anode, more zincophilic sites are established on the electrode surface. It demonstrates that uniform deposition of Zn ions by deepening the binding energy with Zn ion and its unique hollow structure shortens the diffusion distance of Zn ions and enhances the reaction kinetics. The assembled Zn-ion hybrid supercapacitor (ZHSC) of ZnSnO3@Zn//AC achieved a long-term lifespan with 4000 cycles at a current density of 10 mA cm-2 with a Coulombic efficiency of 99.31% and capacity retention of 79.6%. This work offers a new path for advanced Zn anodes interphase supporting the long cycle life with large capacities and improving electrochemical reversibility.

17.
Small ; : e2403831, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949398

RESUMEN

Lithium metal batteries are regarded as promising candidates for next-generation energy storage systems. However, their anodes are susceptible to interfacial instability due to significant volume changes, which significantly impacts the cycle life of lithium metal batteries. Here, a rapid method for the fabrication of 3D-hosts with interface modified layers is reported. A simple infiltration and heating process enables the transformation of copper foam into Zn-BDC-modified copper foam within 1 min, rendering it suitable for use as a current collector for lithium metal anodes. The Zn-BDC nanosheets with high lithiophilicity are uniformly distributed on the surface of the current collector, facilitating the uniform deposition of lithium and reducing the volume change. Consequently, the half cell exhibits a remarkably low overpotential (26 mV) at a current-density of 4 mA cm-2 and is cycled stably for 1000 h. Furthermore, it demonstrates a significant enhancement in performance in the LiFePO4 full cell. This study provides a crucial reference on the connection between the interfacial modification of the current collector and the lithium deposition behavior, which promotes the practicalization of lithium metal anodes.

18.
Small ; : e2405627, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39139012

RESUMEN

Photo-accelerated rechargeable batteries play a crucial role in fully utilizing solar energy, but it is still a challenge to fabricate dual-functional photoelectrodes with simultaneous high solar energy harvesting and storage. This work reports an innovative photo-accelerated zinc-ion battery (PAZIB) featuring a photocathode with a SnO2@MnO2 heterojunction. The design ingeniously combines the excellent electronic conductivity of SnO2 with the high energy storage and light absorption capacities of MnO2. The capacity of the SnO2@MnO2-based PAZIB is ≈598 mAh g-1 with a high photo-conversion efficiency of 1.2% under illumination at 0.1 A g-1, which is superior to that of most reported MnO2-based ZIB. The boosting performance is attributed to the synergistic effect of enhanced photogenerated carrier separation efficiency, improved conductivity, and promoted charge transfer by the SnO2@MnO2 heterojunction, which is confirmed by systematic experiments and theoretical simulations. This work provides valuable insights into the development of dual-function photocathodes for effective solar energy utilization.

19.
J Transl Med ; 22(1): 251, 2024 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459513

RESUMEN

BACKGROUND: Circular RNAs (circRNAs) have been proved to play crucial roles in the development of various cancers. However, the molecular mechanism of circGLIS3 involved in gastric cancer (GC) tumorigenesis has not been elucidated. METHODS: The higher expression level of circGLIS3 was identified in GC through RNA sequencing and subsequent tissue verification using Quantitative real-time PCR (qRT-PCR). A series of functional experiments in vitro and in vivo were performed to evaluated the effects of circGLIS3 on tumor growth and metastasis in GC. The interaction and regulation of circGLIS3/miR-1343-3p/PGK1 axis was confirmed by RNA pulldown, western blot, and rescue experiments. RIP and western blot were performed to demonstrate the role of circGLIS3 in regulating phosphorylation of VIMENTIN. We then used qRT-PCR and co culture system to trace circGLIS3 transmission via exosomal communication and identify the effect of exosomal circGLIS3 on gastric cancer and macrophages. Finally, RIP experiments were used to determine that EIF4A3 regulates circGLIS3 expression. RESULTS: CircGLIS3(hsa_circ_0002874) was significantly upregulated in GC tissues and high circGLIS3 expression was associated with advanced TNM stage and lymph node metastasis in GC patients. We discovered that overexpression of circGLIS3 promoted GC cell proliferation, migration, invasion in vitro and in vivo, while suppression of circGLIS3 exhibited the opposite effect. Mechanistically, circGLIS3 could sponge miR-1343-3p and up-regulate the expression of PGK1 to promote GC tumorigenesis. We also found that circGLIS3 reduced the phosphorylation of VIMENTIN at ser 83 site by binding with VIMENTIN. Moreover, it was proven that exosomal circGLIS3 could promote gastric cancer metastasis and the M2 type polarization of macrophages. In the final step, the mechanism of EIF4A3 regulating the generation of circGLIS3 was determined. CONCLUSION: Our findings demonstrate that circGLIS3 promotes GC progression through sponging miR-1343-3p and regulating VIMENTIN phosphorylation. CircGLIS3 is a potential therapeutic target for GC patients.


Asunto(s)
MicroARNs , Neoplasias Gástricas , Humanos , Carcinogénesis , Línea Celular Tumoral , Proliferación Celular/genética , Transformación Celular Neoplásica , ARN Helicasas DEAD-box , Factor 4A Eucariótico de Iniciación , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Fosfoglicerato Quinasa , Fosforilación , Neoplasias Gástricas/genética , Vimentina/genética
20.
J Med Virol ; 96(3): e29531, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38515377

RESUMEN

The Nucleocapsid Protein (NP) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is not only the core structural protein required for viral packaging, but also participates in the regulation of viral replication, and its post-translational modifications such as phosphorylation have been shown to be an important strategy for regulating virus proliferation. Our previous work identified NP could be ubiquitinated, as confirmed by two independent studies. But the function of NP ubiquitination is currently unknown. In this study, we first pinpointed TRIM6 as the E3 ubiquitin ligase responsible for NP ubiquitination, binding to NP's CTD via its RING and B-box-CCD domains. TRIM6 promotes the K29-typed polyubiquitination of NP at K102, K347, and K361 residues, increasing its binding to viral genomic RNA. Consistently, functional experiments such as the use of the reverse genetic tool trVLP model and gene knockout of TRIM6 further confirmed that blocking the ubiquitination of NP by TRIM6 significantly inhibited the proliferation of SARS-CoV-2. Notably, the NP of coronavirus is relatively conserved, and the NP of SARS-CoV can also be ubiquitinated by TRIM6, indicating that NP could be a broad-spectrum anti-coronavirus target. These findings shed light on the intricate interaction between SARS-CoV-2 and the host, potentially opening new opportunities for COVID-19 therapeutic development.


Asunto(s)
COVID-19 , Genoma Viral , SARS-CoV-2 , Ubiquitina-Proteína Ligasas , Humanos , Proliferación Celular , COVID-19/genética , COVID-19/virología , Proteínas de la Nucleocápside/genética , ARN Viral/genética , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteínas de Motivos Tripartitos/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Proteínas de la Nucleocápside de Coronavirus/genética , Proteínas de la Nucleocápside de Coronavirus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA