Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Genomics ; 25(1): 564, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840037

RESUMEN

Mesenchymal Stem Cells are ideal seed cells for tissue repair and cell therapy and have promising applications in regenerative medicine and tissue engineering. Using Platelet-Rich Plasma as an adjuvant to create and improve the microenvironment for Mesenchymal Stem Cells growth can enhance the biological properties of Mesenchymal Stem Cells and improve the efficacy of cell therapy. However, the mechanism by which Platelet-Rich Plasma improves the biological performance of Mesenchymal Stem Cells is still unknown. In this study, by examining the effects of Platelet-Rich Plasma on the biological performance of Mesenchymal Stem Cells, combined with multiomics analysis (Transcriptomics, Proteomics and Metabolomics) and related tests, we analyzed the specific pathways, related mechanisms and metabolic pathways of Platelet-Rich Plasma to improve the biological performance of Mesenchymal Stem Cells. In an in vitro cell culture system, the biological performance of Mesenchymal Stem Cells was significantly improved after replacing Foetal Bovine Serum with Platelet-Rich Plasma, and the genes (ESM1, PDGFB, CLEC7A, CCR1 and ITGA6 et al.) related to cell proliferation, adhesion, growth, migration and signal transduction were significantly upregulated. Platelet-Rich Plasma can enhance the secretion function of MSC exosomes, significantly upregulate many proteins related to tissue repair, immune regulation and anti-infection, and enhance the repair effect of exosomes on skin injury. After replacing Foetal Bovine Serum with Platelet-Rich Plasma, Mesenchymal Stem Cells underwent metabolic reprogramming, the metabolism of amino acids and fatty acids and various signaling pathways were changed, the anabolic pathways of various proteins were enhanced. These results provide a theoretical and technical reference for optimizing the Mesenchymal Stem Cells culture system, improving the biological characteristics and clinical application effects of Mesenchymal Stem Cells.


Asunto(s)
Proliferación Celular , Células Madre Mesenquimatosas , Plasma Rico en Plaquetas , Proteómica , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Plasma Rico en Plaquetas/metabolismo , Humanos , Metabolómica , Animales , Células Cultivadas , Perfilación de la Expresión Génica , Exosomas/metabolismo , Multiómica
2.
J Dairy Sci ; 106(11): 8005-8016, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37641273

RESUMEN

Dairy cows have high incidence of ketosis during perinatal. According to our previous studies, elevated ketone bodies (mainly ß-hydroxybutyrate, BHB) in the peripheral blood are believed to contribute to the impairment of neutrophils mobility and directionality thereby contributing to the immunosuppression and further infectious disease secondary to ketosis. However, the specific effect of BHB on the directionality of bovine neutrophils needs further study and the underlying molecular mechanisms are still unclear. According to the concentration of serum BHB, 40 multiparous cows (within 3 wk postpartum) were selected and divided into the control (n = 20, BHB <0.6 mM) or clinical ketosis (n = 20, BHB >3.0 mM) group. Blood samples were collected for baseline serum characteristics analysis and neutrophil mobility and directionality detection. Platelet activation factor was used as a chemoattractant in cell migration experiments. Our ex-vivo data showed ketotic cows, compared with control cows, were in a negative energy balance state, and their neutrophils had shorter migration distance, lower migration speed, and impaired migration directionality. Neutrophils from control cows were incubated with 3.0 mM BHB for 6 h in vitro. Similarly, BHB stimulation resulted in impaired mobility and directionality of bovine neutrophils. We further specifically studied the underlying molecular mechanism of BHB regulating neutrophil migration directionality in the present study. Cell division control protein 42 homolog (Cdc42) and Ras-related C3 botulinum toxin substrate 1 (Rac1), 2 key markers in the regulation of migration directionality, were found increased after BHB treatment in their total and activated protein levels while decreasing in their transcription level, suggesting that an imbalance of the protein degradation system may be involved. Interestingly, transmission electron microscopy data revealed a decrease in autophagosome number in neutrophils from ketotic cows. Western blotting data showed the accumulation of sequestosome-1 (p62) protein and a decrease in microtubule-associated protein 1 light chain 3-II (LC3-II) protein abundance after BHB treatment, further confirming that the autophagy flux was inhibited in neutrophils from ketotic cows. Additionally, rapamycin (RAPA), a specific autophagy activator, was used with or without BHB treatment in vitro. Accordingly, the BHB-induced impairment of migration directionality but not mobility was relieved by RAPA. Furthermore, as verified by in vivo experiments, compared with the control cows, the protein abundance of total and activated Cdc42 and Rac1 increased and their mRNA abundance decreased in neutrophils from ketotic cows. Overall, the present study revealed that pathological concentration of BHB impairs neutrophil migration directionality through inhibiting the autophagy-mediated degradation of Cdc42 and Rac1. These findings help explain the immunosuppression caused by ketosis.

3.
J Dairy Sci ; 105(3): 2473-2486, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34998570

RESUMEN

Subclinical ketosis (SCK) in dairy cows, a common metabolic disorder during the peripartal period, is accompanied by systemic inflammation. Excessive release of azurophil granule (AG) contents during degranulation of polymorphonuclear neutrophils (PMN) could contribute to systemic inflammation in SCK cows. Although the increase in blood free fatty acids (FFA) in SCK cows may promote AG degranulation from PMN, the underlying mechanisms are unclear. Thirty multiparous cows (within 3 wk postpartum) with similar lactation numbers (median = 3, range = 2-4) and days in milk (median = 6, range = 3-15) were classified based on serum ß-hydroxybutyrate (BHB) level as control (n = 15, BHB < 0.6 mM) or SCK (n = 15, 1.2 mM < BHB < 3.0 mM). Cows with SCK had greater levels of serum haptoglobin, serum amyloid A, IL-1ß, IL-6, IL-8 and tumor necrosis factor-α. These proinflammatory factors had strong positive correlations with myeloperoxidase (MPO), a marker protein of PMN AG, whose content was greater in the serum of SCK cows. Both the number of AG and the protein abundance of MPO were lower in PMN isolated from SCK cows. Additionally, we found a greater ratio of blood CH138A+/CD63high cells and greater mean fluorescence intensity of CD63 on the PMN membrane, further confirming the greater degree of AG degranulation in cows with SCK. In vitro FFA dose response (0, 0.3, 0.6, 1.2, and 2.4 mM for 4 h) and time course (0, 0.5, 1, 2, and 4 h with 0.6 mM) experiments were performed on PMN isolated from control cows. The increase in MPO content in extracellular supernatant resulting from those experiments led to the selection of 0.6 mM FFA for 1 h duration as conditions for subsequent studies. After FFA treatment, release of intracellular MPO was increased along with increased levels of CD63 mean fluorescence intensity on the PMN membrane, confirming that FFA promoted degranulation of AG. In addition, FFA treatment increased reactive oxygen species (ROS) production by PMN, an effect that was attenuated by incubation with diphenyleneiodonium chloride (DPI), a NADPH oxidase-derived ROS inhibitor. The mitochondrial-derived ROS inhibitor carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP) did not affect ROS in response to FFA treatment. Treatment with FFA increased p47 phosphorylation and mRNA abundance of NCF1, NCF2, and CYBB in PMN. Furthermore, DPI, but not FCCP, dampened the degranulation of PMN AG induced by FFA in vitro. These data suggested that the degranulation of AG in PMN induced by FFA was mediated by NADPH oxidase-derived ROS. As verified ex vivo, PMN from SCK cows had greater levels of ROS, phosphorylation of p47, and mRNA abundance of NCF1, NCF2, and CYBB. Overall, the present study revealed that high blood concentrations of FFA in SCK cows induce the production of NADPH oxidase-derived ROS, thereby promoting degranulation of AG in PMN. The stimulatory effect of FFA on the release of AG content during degranulation, especially MPO, provides a new insight into the systemic inflammation experienced by peripartal cows with SCK.


Asunto(s)
Enfermedades de los Bovinos , Cetosis , Ácido 3-Hidroxibutírico , Animales , Bovinos , Enfermedades de los Bovinos/metabolismo , Ácidos Grasos no Esterificados , Femenino , Cetosis/metabolismo , Cetosis/veterinaria , Lactancia , Leche/metabolismo , NADPH Oxidasas , Neutrófilos/metabolismo , Especies Reactivas de Oxígeno
4.
J Dairy Sci ; 105(4): 3405-3415, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35123783

RESUMEN

Ketosis in dairy cows often occurs in the peripartal period and is accompanied by immune dysfunction. High concentrations of ß-hydroxybutyrate (BHB) in peripheral blood during ketosis inhibits the release of neutrophil extracellular traps (NET) and contributes to immune dysfunction. However, the mechanisms whereby BHB affects NET release remains unclear. In this study, 5 healthy peripartal dairy cows (within 3 wk postpartum) with serum BHB concentrations <0.6 mM and glucose concentrations >3.5 mM were used as blood donors. Blood samples were collected before feeding, and the isolated polymorphonuclear neutrophils were incubated with 3 mM BHB for different times. Inhibition of Cit-H3 (citrullinated histone 3) protein abundance, a marker of NET activation, in response to BHB was used to determine an optimal incubation time for in vitro experiments. Four hours was selected as the optimal duration of BHB treatment. Phorbol-12-myristate-13-acetate (PMA) was used to induce the release of NET in vitro. The BHB treatment with or without PMA treatment decreased protein abundance of Cit-H3 and PAD4 (arginine deiminase 4) and increased neutrophil elastase. Immunofluorescence and scanning electron microscope analyses revealed that BHB treatment inhibited PMA-induced NET release. The BHB treatment also decreased double strain DNA content in the supernatant, further confirming the inhibitory effect of BHB on NET release. Furthermore, BHB treatment decreased the level of intracellular reactive oxygen species (ROS), phosphorylation level of p47, and protein abundance of Rac2, suggesting that BHB-induced NET inhibition may have been caused by decreased NADPH oxidase-derived ROS. The phosphorylation level of phosphoinositide 3-kinase (PI3K), an important upstream regulator of NADPH oxidase, was attenuated by BHB treatment. To confirm the involvement of PI3K signaling pathway in BHB-induced NET inhibition, 740Y-P, a potent activator of PI3K signaling pathway, was used. Data indicated that 740Y-P relieved the inhibitory effects of BHB on ROS production and NADPH oxidase activation. Importantly, as revealed by immunofluorescence and scanning electron microscopy analyses, 740Y-P also dampened the inhibitory effect of BHB on NET release and the protein abundance of Cit-H3 and PAD4. Overall, the present study revealed that high concentration of BHB impairs NET release through inhibiting PI3K-mediated NADPH oxidase ROS production. These findings help partly explain the immune dysfunction in cows experiencing negative energy balance or ketosis in early lactation.


Asunto(s)
Enfermedades de los Bovinos , Trampas Extracelulares , Ácido 3-Hidroxibutírico/farmacología , Animales , Bovinos , Enfermedades de los Bovinos/metabolismo , Trampas Extracelulares/metabolismo , Femenino , NADP , NADPH Oxidasas , Neutrófilos , Fosfatidilinositol 3-Quinasa , Fosfatidilinositol 3-Quinasas , Especies Reactivas de Oxígeno
5.
J Dairy Sci ; 105(10): 8286-8297, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35965126

RESUMEN

Peripartum dairy cows experience negative energy balance, characterized by high concentrations of blood free fatty acids (FFA) and immune dysfunction. Palmitic acid (PA), the most abundant saturated fatty acid in cow blood, is not only an energy precursor, but causes cellular dysfunction when in excess. Neutrophil extracellular traps (NET) are one of the arsenals of weapons neutrophils use to fight invading pathogens. However, given the marked increase in circulating PA during the peripartum period, it remains to be determined what effect (if any) PA has on NET release. Thus, the objective of this study was to evaluate the effect of PA on NET release and the underlying mechanism in vitro. Phorbol-12-myristate-13-acetate (PMA; 100 ng/mL, 3 h) was used to induce the release of NET in vitro. We isolated neutrophils from the peripheral blood of 5 healthy postpartum dairy cows with similar parity (median = 3, range = 2-4), milk yield (median = 27.84 kg/d per cow, range = 25.79-31.43 kg/d per cow), days in milk (median = 7 d, range = 4-10 d), and serum FFA <0.25 mM, ß-hydroxybutyric acid <0.6 mM, and glucose >3.5 mM. Inhibition of double-stranded DNA (dsDNA) level, a marker of NET release, in response to PA was used to determine an optimal incubation time and concentration for in vitro experiments. Cells were maintained in RPMI-1640 basic medium without phenol red, treated with 600 µM PA for different times (4, 5, 6, and 7 h) in the presence or absence of PMA. There was a decrease for dsDNA level in the supernatant due to increased duration of PA treatment, with a peak response at 6 h. Thus, 6 h was selected as the challenge time. Then, cells were treated with different concentrations of PA (100, 200, 400, and 600 µM) for 6 h in the presence or absence of PMA. There was a decrease for dsDNA level in the supernatant due to increased dose of PA, with a peak response at 400 µM. Finally, 400 µM PA for 6 h was selected as the treatment for subsequent experiments. Protein abundance of citrullinated histone in the presence or absence of PMA was markedly lower in response to incubation with PA. Morphological observations by laser confocal microscopy and scanning electron microscopy showed that the ratio of NET-releasing cells decreased in response to incubation with PA. Autophagy is a potential key intermediate process in the regulation of NET by PA. To investigate the effect of PA on autophagy, we used chloroquine to block lysosomal degradation. Exogenous PA led to accumulation of sequestosome-1 and microtubule-associated protein 1 light chain 3-II, and no further accumulation in the presence of chloroquine, all of which suggested an impairment of autophagic flux. To verify the role of autophagy in NET, we used rapamycin to promote autophagic flux; 100 nM rapamycin attenuated the suppressive effect of PA on NET release indicated by greater dsDNA levels, accumulation of citrullinated histone, and ratio of NET-releasing neutrophils. Overall, these data demonstrate PA inhibits NET release by suppressing autophagic flux, which provides information for understanding the immune dysfunction in postpartum cows.


Asunto(s)
Trampas Extracelulares , Ácido 3-Hidroxibutírico/metabolismo , Acetatos/metabolismo , Animales , Bovinos , Cloroquina/metabolismo , ADN/metabolismo , Trampas Extracelulares/metabolismo , Ácidos Grasos/metabolismo , Ácidos Grasos no Esterificados/metabolismo , Femenino , Glucosa/metabolismo , Histonas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Neutrófilos , Ácido Palmítico/metabolismo , Ácido Palmítico/farmacología , Fenolsulfonftaleína/metabolismo , Periodo Posparto , Sirolimus/metabolismo
6.
J Dairy Sci ; 105(1): 761-771, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34635355

RESUMEN

Ketosis in dairy cows often occurs in the peripartal period and is accompanied by immune dysfunction. High concentrations of ß-hydroxybutyrate (BHB) in peripheral blood during ketosis are closely related to the impairment of polymorphonuclear neutrophil (PMN) chemotaxis and contribute to immune dysfunction. The specific effect of BHB on PMN chemotaxis in dairy cows and the underlying molecular mechanisms are unclear. Here, 30 multiparous cows (within 3 wk postpartum) classified based on serum BHB as control (n = 15, BHB <0.6 mM) or clinically ketotic (n = 15, BHB >3.0 mM) were used. Blood samples were collected before feeding, and the isolated PMN were treated with platelet-activating factor for 0.5 h to activate their migration. Scanning electron microscopy revealed a longer tail in PMN of ketotic cows. In addition, the phosphorylation and transcription levels of myosin light chain 2 (MLC2) increased in PMN of ketotic cows. Polymorphonuclear neutrophils from control dairy cows were incubated with 3.0 mM BHB for different times in vitro, and 6 h was selected as the proper duration of BHB stimulation according to its inhibition effect on PMN migration using an under-agarose PMN chemotaxis model. Similarly, BHB stimulation in vitro resulted in inhibition of migration distance and deviation of migration direction of PMN, as well as a longer tail in morphology in the scanning electron microscope data, suggesting that BHB-induced PMN migration inhibition may be mediated by impairing the trailing edge contraction. To confirm this hypothesis, sotrastaurin (Sotra)-a specific inhibitor of protein kinase C (PKC), which is the core regulator of cell contraction-was used with or without BHB treatment in vitro. Sotra was pretreated 0.5 h before BHB treatment. Accordingly, BHB treatment increased the phosphorylation level of PKC and MLC2, the protein abundance of RhoA and rho-kinase 1 (ROCK1), and the mRNA abundance of PRKCA, MYL2, RHOA, and ROCK1 in PMN. In contrast, these effects of BHB on PMN were dampened by Sotra. As demonstrated by immunofluorescence experiments in vitro, the BHB-induced inhibition of trailing edge contraction of PMN was relieved by Sotra. In addition, Sotra also dampened the effects of BHB on PMN migration in vitro. Furthermore, as verified by in vivo experiments, compared with the control cows, both abundance and activation of PKC signaling were enhanced in PMN of ketotic cows. Overall, the present study revealed that high concentrations of blood BHB impaired PMN migration distance through inhibition of the trailing edge contraction, mediated by enhancing the activation of PKC-MLC2 signaling. These findings help explain the dysfunctional immune state in ketotic cows and provide information on the pathogenesis of infectious diseases secondary to ketosis.


Asunto(s)
Enfermedades de los Bovinos , Cetosis , Ácido 3-Hidroxibutírico , Animales , Miosinas Cardíacas , Bovinos , Femenino , Cetosas , Cetosis/veterinaria , Lactancia , Cadenas Ligeras de Miosina , Neutrófilos , Proteína Quinasa C , Transducción de Señal
7.
J Dairy Sci ; 105(4): 3477-3489, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35151471

RESUMEN

Ketosis in dairy cows, a common metabolic disorder during the peripartal period, is accompanied by systemic inflammation and high concentrations of blood ß-hydroxybutyrate (BHB). Neutrophil apoptosis plays a key role in maintaining the balance of inflammation and functional capacity of circulating neutrophils in ketotic cows. The kinases ERK1/2 and AKT, as well as their downstream Bcl-2 family-mediated mitochondrial signaling, are important apoptosis-regulating pathways in neutrophils. The objective of our study was to investigate the effects of BHB on neutrophil apoptosis and the underlying regulatory mechanisms during ketosis. Neutrophils were isolated from 5 multiparous cows (within 3 wk postpartum) with serum BHB concentrations <0.6 mM and glucose concentrations >3.5 mM. In a series of experiments, neutrophils were treated with increasing concentrations of BHB (0, 0.6, 2, and 3 mM for 10 h) and time (0, 2, 4, 6, 8, and 10 h with 2 mM). Subsequently, a 2 mM BHB dose was used to challenge neutrophils for 8 h. Apoptosis rate of neutrophils and protein abundance of cleaved caspase 3 were lower after BHB treatment. Treatment with BHB decreased protein and mRNA abundance of the pro-apoptotic genes Bax (BAX) and Bad (BAD), whereas it increased mitochondrial membrane potential (MMP) and protein and mRNA of the anti-apoptotic genes Bcl-xL (BCL2L1) and Mcl-1 (MCL1). This indicated that a mitochondrial pathway was involved in the inhibition of neutrophil apoptosis via BHB. In addition, both SCH772984 (an inhibitor of the ERK1/2 signaling pathway) and MK-2206 (an inhibitor of the AKT signaling pathway) alleviated the BHB-induced anti-apoptotic function of the Bcl-2 family and the inhibition of MMP. Overall, our data demonstrated that high concentrations of BHB inhibit apoptosis in bovine neutrophils by activating the ERK1/2 and AKT signaling pathways. These findings provide a theoretical basis for the understanding of systemic inflammation in ketotic cows.


Asunto(s)
Enfermedades de los Bovinos , Cetosis , Ácido 3-Hidroxibutírico/farmacología , Animales , Apoptosis , Bovinos , Enfermedades de los Bovinos/metabolismo , Femenino , Cetosis/veterinaria , Lactancia , Sistema de Señalización de MAP Quinasas , Neutrófilos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
8.
Environ Geochem Health ; 44(3): 799-816, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34061305

RESUMEN

The supply sources of a water resource in arid area can be determined through analysis of the hydrochemical and stable isotopic characteristics of runoff in an alpine glacier river basin. Using mathematical statistical analyses, Piper diagrams, and Gibbs diagrams, this study analyzed the spatiotemporal variations of the hydrochemistry and the stable hydrogen and oxygen isotopes of the Kashi River in Ili (Xinjiang, China) to investigate their characteristics and environmental importance. Runoff samples were collected in the mountainous area of the Kashi River from December 2017 to November 2018. Results showed that the runoff water type of the Kashi River is Ca2+-HCO3- and the spring water type is Ca2+-HCO3--SO42-. The main factors controlling the hydrochemical composition of runoff were rock weathering. Under the influence of supply sources and water conservancy facilities, the hydrochemistry and stable isotopic characteristics of the runoff showed evident spatiotemporal variation. The hydrochemical and stable isotopic values of runoff in winter and spring were lower and more consistent in comparison with those in summer and autumn. The characteristics of the spatial variations of hydrochemical and stable isotopic values in runoff differed with elevation. The supply sources in the Kashi River in different seasons were determined by analyzing the temporal variation characteristics of the hydrochemistry and stable isotopes of runoff.


Asunto(s)
Agua Subterránea , Ríos , China , Monitoreo del Ambiente/métodos , Agua Subterránea/química , Isótopos de Oxígeno , Ríos/química
9.
J Dairy Sci ; 104(6): 6909-6918, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33715853

RESUMEN

Ketosis is a common metabolic disorder in high-producing dairy cows during the peripartal period. Negative energy balance leads to increased circulating levels of nonesterified fatty acids (NEFA) and ß-hydroxybutyrate (BHB), consequently increasing the risk of ketosis. It is well-known that NEFA and BHB can induce lipotoxicity and oxidative stress in bovine tissues/organs including the liver and adipose tissue. Although the mammary gland is one important site for NEFA and BHB metabolism, whether an overload in their concentrations within mammary cells causes oxidative stress during ketosis remains unclear. Thus, the present study compared oxidative stress status and mitochondrial function in mammary tissues harvested by biopsy from healthy (n = 15) and clinically ketotic (n = 15) dairy cows within 2 to 3 wk postpartum. Compared with healthy cows, ketotic cows had depressed daily milk yield (median: 28.92 vs. 21.56 kg) and dry matter intake (median: 22.36 vs. 19.92 kg/d), accompanied by elevated plasma NEFA (median: 0.32 vs. 1.26 mM), BHB (median: 0.52 vs. 3.69 mM), and lower plasma glucose (median: 4.55 vs. 2.13 mM). As detected by a commercial kit, a greater level of reactive oxygen species in mammary epithelial cells of ketotic cows, and greater oxidant indices including hydrogen peroxide and malondialdehyde coupled with lower antioxidant indices including glutathione peroxidase, catalase, and superoxide dismutase activities as detected by the respective biochemical kits in the homogenate of mammary tissue of ketotic cows indicated increased oxidative stress status. Lower citrate synthase activity and ATP production as detected by the respective commercial kits coupled with lower mRNA and protein abundance of mitochondrial respiratory chain oxidative phosphorylation complexes I-V (CO I-V) in ketotic cows suggested an impairment of mitochondrial function. This was supported by lower mRNA and protein abundance of nucleus-derived mitochondrial function regulators including peroxisome proliferator activated receptor gamma coactivator 1 α, mitofusin 2, nuclear respiratory factor 1, and mitochondrial transcription factor A. Lower mitochondrial membrane potential evaluated via the tetraethylbenzimidazolylcarbocyanine iodide (JC-1) labeling method and swollen mitochondria in mammary epithelial cells of ketotic cows suggested the existence of mitochondrial damage. Overall, the present study revealed extensive mitochondrial dysfunction and oxidative stress in the mammary gland of clinically ketotic cows. As such, data suggest that reduced milk yield in cows with ketosis is partly due to enhanced oxidative stress along with mitochondrial dysregulation in the mammary gland.


Asunto(s)
Enfermedades de los Bovinos , Cetosis , Ácido 3-Hidroxibutírico , Animales , Bovinos , Ácidos Grasos no Esterificados , Femenino , Cetosis/veterinaria , Lactancia , Mitocondrias , Estrés Oxidativo
10.
Front Vet Sci ; 11: 1418101, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948672

RESUMEN

Feline chronic gingivostomatitis (FCGS) is an ulcerative and/or proliferative disease that typically affects the palatoglossal folds. Because of its unknown pathogenesis and long disease course, it is difficult to treat and has a high recurrence rate. Most of the bacteria in the oral microbiota exist in the mouth symbiotically and maintain a dynamic balance, and when the balance is disrupted, they may cause disease. Disturbance of the oral microbiota may play an important role in the development of FCGS. In this study, the medical records of 3109 cats in three general pet hospitals in Xi 'an were collected. Sixty-one cats with FCGS were investigated via questionnaires, routine oral examinations and laboratory examinations. Oral microbiota samples were collected from 16 FCGS-affected cats, and microbial species were identified by 16S rDNA sequencing. The results showed that the incidence of FCGS had no significant correlation with age, sex or breed. However, the incidence of FCGS was associated with immunization, a history of homelessness and multicat rearing environments. The number of neutrophils and the serum amyloid A concentration were increased, and the percentage of cells positive for calicivirus antigen was high in all cases. All the cats had different degrees of dental calculus, and there were problems such as loss of alveolar bone or tooth resorption. Compared with those in healthy cats, the bacterial diversity and the abundance of anaerobic bacteria were significantly increased in cats with FCGS. Porphyromonas, Treponemas and Fusobacterium were abundant in the mouths of the affected cats and may be potential pathogens of FCGS. After tooth extraction, a shift could be seen in the composition of the oral microbiota in cats with FCGS. An isolated bacteria obtained from the mouths of the affected cats was homologous to P. gulae. Both the identified oral microbiota and the isolated strain of the cats with FCGS had high sensitivity to enrofloxacin and low sensitivity to metronidazole. This study provides support to current clinical criteria in diagnosing FCGS and proposes a more suitable antibiotic therapy.

11.
Poult Sci ; 97(9): 3218-3229, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-29762790

RESUMEN

The aim of this study was to investigate the effects of Clostridium butyricum (C. butyricum) on the performance, serum lipid metabolism, muscle morphology, meat quality, and fatty acid profiles of Peking ducks. A total of 1,500 Peking ducks were randomly divided into five groups with five replicates and were fed a non-antibiotic basal diet (Control) or a basal diet supplemented with either 200, 400, or 600 mg/kg of C. butyricum (2.0 × 109 CFU/g) or 150 mg of aureomycin/kg for 42 d. Compared with the control group, supplementation with C. butyricum increased the average daily weight gain but reduced the feed/gain ratio from 1 to 42 d of age. Similarly, dietary C. butyricum increased the activities of antioxidant enzymes but decreased the malondialdehyde (MDA) and lipid metabolites concentration. C. butyricum supplementation increased the muscle pH value at 45 min postmortem, the redness of the meat, and the contents of inosine acid (IMP) and intramuscular fat (IMF) in Peking ducks. By contrast, C. butyricum supplementation lowered the lightness, drip loss, and the shear force of breast meat. Supplementation with C. butyricum increased the concentrations of essential amino acids and flavor amino acids, as well as arachidonic acid (AA), docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and total polyunsaturated fatty acids (PUFA) in breast muscle. Dietary C. butyricum could positively improve performance, lipid metabolism, meat quality, and the amino acid and fatty acid composition in a dose-dependent manner. Therefore, C. butyricum is proposed as a feasible alternative feed additive for the production of healthier Peking duck meat with favorable properties.


Asunto(s)
Antioxidantes/metabolismo , Clostridium butyricum/química , Patos/fisiología , Carne/análisis , Probióticos/farmacología , Aminoácidos/metabolismo , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales/efectos de los fármacos , Animales , Dieta/veterinaria , Patos/sangre , Patos/crecimiento & desarrollo , Ácidos Grasos/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Músculo Esquelético/anatomía & histología , Músculo Esquelético/fisiología , Músculos Pectorales/metabolismo , Probióticos/administración & dosificación , Distribución Aleatoria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA