Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Sensors (Basel) ; 24(1)2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38202896

RESUMEN

Three-dimensional object modeling is necessary for developing virtual and augmented reality applications. Traditionally, application engineers must manually use art software to edit object shapes or exploit LIDAR to scan physical objects for constructing 3D models. This is very time-consuming and costly work. Fortunately, GPU recently provided a cost-effective solution for massive data computation. With GPU support, many studies have proposed 3D model generators based on different learning architectures, which can automatically convert 2D object pictures into 3D object models with good performance. However, as the demand for model resolution increases, the required computing time and memory space increase as significantly as the parameters of the learning architecture, which seriously degrades the efficiency of 3D model construction and the feasibility of resolution improvement. To resolve this problem, this paper proposes a part-oriented point cloud reconstruction framework called Part2Point. This framework segments the object's parts, reconstructs the point cloud for individual object parts, and combines the part point clouds into the complete object point cloud. Therefore, it can reduce the number of learning network parameters at the exact resolution, effectively minimizing the calculation time cost and the required memory space. Moreover, it can improve the resolution of the reconstructed point cloud so that the reconstructed model can present more details of object parts.

2.
Glob Chang Biol ; 25(1): 314-326, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30358033

RESUMEN

Excessive ammonia (NH3 ) emitted from nitrogen (N) fertilizer applications in global croplands plays an important role in atmospheric aerosol production, resulting in visibility reduction and regional haze. However, large uncertainty exists in the estimates of NH3 emissions from global and regional croplands, which utilize different data and methods. In this study, we have coupled a process-based Dynamic Land Ecosystem Model (DLEM) with the bidirectional NH3 exchange module in the Community Multiscale Air-Quality (CMAQ) model (DLEM-Bi-NH3 ) to quantify NH3 emissions at the global and regional scale, and crop-specific NH3 emissions globally at a spatial resolution of 0.5° × 0.5° during 1961-2010. Results indicate that global NH3 emissions from N fertilizer use have increased from 1.9 ± 0.03 to 16.7 ± 0.5 Tg N/year between 1961 and 2010. The annual increase of NH3 emissions shows large spatial variations across the global land surface. Southern Asia, including China and India, has accounted for more than 50% of total global NH3 emissions since the 1980s, followed by North America and Europe. Rice cultivation has been the largest contributor to total global NH3 emissions since the 1990s, followed by corn and wheat. In addition, results show that empirical methods without considering environmental factors (constant emission factor in the IPCC Tier 1 guideline) could underestimate NH3 emissions in context of climate change, with the highest difference (i.e., 6.9 Tg N/year) occurring in 2010. This study provides a robust estimate on global and regional NH3 emissions over the past 50 years, which offers a reference for assessing air quality consequences of future nitrogen enrichment as well as nitrogen use efficiency improvement.


Asunto(s)
Contaminantes Atmosféricos/análisis , Amoníaco/análisis , Producción de Cultivos/métodos , Fertilizantes/análisis , Nitrógeno/análisis , Modelos Biológicos
3.
J Environ Manage ; 154: 208-15, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25728918

RESUMEN

Over a 3-year period, the effect of differing N-application regimes on soil extractable-P concentration, soil phosphatase activity, and forage P uptake in a P-enriched grazed-pasture system was investigated. In the fall of each year, six 0.28-ha plots were overseeded with triticale ( × Triticosecale rimpaui Wittm.) and crimson clover (Trifolium incarnatum) into a tall fescue (Lolium arundinacea)/bermudagrass (Cynodon dactylon) sod and assigned to 1 of 3 N-fertilizer treatments (n = 2): 100% of N recommendation in a split application (100N), 50% in a single application (50N), and 0% of N recommendation (0N) for triticale. Cattle commenced grazing the following spring and grazed until May. In the summer, plots were overseeded with cowpea (Vigna unguiculata), fertilized at the same rates by reference to N recommendations for bermudagrass, and grazed by cattle until September. There were no effects of N fertilization on soil phosphatase activity, electrical conductivity, or concentrations of water-soluble P. Concentrations of extractable P decreased in plots receiving 50N, but increasing N fertilization to 100N resulted in no further reduction in extractable P. Forage biomass, foliar P concentrations, and forage P mass were not affected by N fertilization rates at the plant-community level, but responses were observed within individual forage species. Results are interpreted to mean that N fertilization at 50% of the agronomic recommendation for the grass component can increase forage P mass of specific forages and decrease soil extractable P, thus providing opportunity for decreasing P losses from grazed pasture.


Asunto(s)
Alimentación Animal/análisis , Crianza de Animales Domésticos , Fertilizantes , Suelo/química , Animales , Bovinos , Cynodon/metabolismo , Grano Comestible/metabolismo , Femenino , Festuca/metabolismo , Masculino , Medicago/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Poaceae/metabolismo , Estaciones del Año , Trifolium/metabolismo
4.
Sci Total Environ ; 943: 173709, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38852864

RESUMEN

Antibiotics and polycyclic aromatic hydrocarbons (PAHs) are common environmental contaminants in the aquatic region encompassing the estuary of the Yellow River and Laizhou Bay. But little information is available about the trophic transfer of antibiotics and PAHs in the marine food web of this area. This study investigated the occurrence and trophic transfer of 19 antibiotics and 16 PAHs in marine organisms from a food web of Laizhou Bay of the Yellow River estuary. Sulfonamides, fluoroquinolones, and 2 to 4-ring PAHs were the dominant contaminants in organisms. There was a significant positive correlation between the log total concentration of sulfonamides and trophic level (TL). Sulfadiazine, sulfamethazine, and erythromycin had biomagnification effects, while ciprofloxacin and ofloxacin had biological dilution effects. The log total concentration of PAHs had a significant negative correlation with TL. Naphthalene, fluorene, anthracene, pyrene, and benzo[g,h,i]perylene had biological dilution effects. The distinct correlations of trophic magnification factors Dow of antibiotics and Kow of 2 to 5-ring PAHs, indicating that the potential of these two coefficients for predicting their transfer. Risk assessment indicated that the consumption of seafood containing antibiotics and PAHs in Laizhou Bay of the Yellow River estuary posed health and carcinogenic risks to human, respectively.


Asunto(s)
Antibacterianos , Monitoreo del Ambiente , Estuarios , Cadena Alimentaria , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes Químicos del Agua/análisis , Antibacterianos/análisis , China , Medición de Riesgo , Humanos , Ríos/química , Organismos Acuáticos , Animales
5.
J Hazard Mater ; 469: 133980, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38492391

RESUMEN

Hydroxyl radicals (·OH) produced in subsurface sediments play an important role in biogeochemical cycles. One of the major sources of·OH in sediments is associated with reduced compounds (e.g., iron and organic matter) oxygenation. Moreover, the properties of iron forms and dissolved organic matter (DOM) components varied significantly across redox-fluctuation zones of estuaries. However, the influence of these variations on mechanisms of·OH production in estuaries remains unexplored. Herein, sediments from riparian zones, wetlands, and rice fields in the Yellow River Estuary were collected to systematically explore the diverse mechanisms of·OH generation. Rhythmic continuous·OH production (82-730 µmol/kg) occurred throughout the estuary, demonstrating notable spatial heterogeneity. The amorphous iron form and humic-like DOM components were the key contributors to·OH accumulation in estuary wetlands and freshwater restoration wetlands, respectively. The crystalline iron form and protein-like DOM components influenced the capabilities of iron reduction and continuous·OH production. Moreover, the orthogonal partial least squares models outperformed various multivariate models in screening crucial factors and predicting the spatiotemporal production of·OH. This study provides novel insights into varied mechanisms of·OH generation within distinct redox-fluctuation zones in estuaries and further elucidates elemental behavior and contaminant fate in estuarine environments. ENVIRONMENTAL IMPLICATION: Given that estuaries serve as sinks for anthropogenic pollutants, various organic pollutants (e.g., emerging contaminants such as antibiotics) have been widely detected in estuarine environments. The production of·OH in sediments has been proven to affect the fate of contaminants. Therefore, the varied mechanisms of·OH in estuarine environments, dominated by diverse iron forms and DOM components, were explored in this study. MLR and OPLS models exhibited good performance in screening crucial factors and predicting·OH production. Our work highlights that in estuarine subsurface environments, the presence of·OH potentially leads to a natural degradation of pollutants.

6.
G3 (Bethesda) ; 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39217411

RESUMEN

Peanut (Arachis hypogaea L.) is a globally important oil and food crop frequently grown in arid, semi-arid, or dryland environments. Improving drought tolerance is a key goal for peanut crop improvement efforts. Here we present the genome assembly and gene model annotation for 'Line8', a peanut genotype bred from drought tolerant cultivars. Our assembly and annotation are the most contiguous and complete peanut genome resources currently available. The high contiguity of the Line8 assembly allowed us to explore structural variation both between peanut genotypes and subgenomes. We detect several large inversions between Line8 and other peanut genome assemblies, and there is a trend for the inversions between more genetically diverged genotypes to have higher gene content. We also relate patterns of subgenome exchange to structural variation between Line8 homeologous chromosomes. Unexpectedly, we discover that Line8 harbors an introgression from A.cardenasii, a diploid peanut relative and important donor of disease resistance alleles to peanut breeding populations. The fully resolved sequences of both haplotypes in this introgression provide the first in situ characterization of A.cardenasii candidate alleles that can be leveraged for future targeted improvement efforts. The completeness of our genome will support peanut biotechnology and broader research into the evolution of hybridization and polyploidy.

7.
Sci Total Environ ; 899: 165742, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37487899

RESUMEN

Accurate identification of the origins of non-point source pollution is essential for the effective control of fecal pollution. Host-associated Bacteroidales and mitochondrial DNA (mtDNA) markers have been developed to identify the sources of human and cattle fecal pollution. However, the differences in persistence between these two types of markers under different environmental conditions are still poorly understood. Here, we conducted mesocosm experiments to investigate the influence of indigenous microbiota and nutrients on the decay of Bacteroidales and mtDNA markers associated with humans and cattle. Raw sewage or cattle feces were inoculated into mesocosms containing natural eutrophic water, sterile eutrophic water or artificial freshwater. The Bacteroidales markers HF183 (human) and CowM3 (cattle) and mtDNA markers HcytB (human) and QMIBo (cattle) were quantified using the quantitative polymerase chain reaction (qPCR) assays. All markers but HF183 decreased the fastest in the presence of indigenous microbiota. Nutrients caused a decrease in the persistence of HF183; however, no significant nutrient effects were observed for HcytB, CowM3, and QMIBo. The time to reach one log reduction (T90) for HF183 and HcytB was similar; CowM3 reached T90 earlier than QMIBo in all the treatments but eutrophic water. E. coli persisted longer than both Bacteroidales and mtDNA markers in the mesocosms regardless of inoculum type. Additionally, 16S rRNA gene amplicon sequencing was used to determine the changes in bacterial communities accompanying the marker decay. Analysis using the SourceTracker software showed that bacterial communities in the mesocosms became more dissimilar to those in the corresponding inoculants over time. Our results indicate that environmental factors are important determinants of genetic markers' persistence, but their impact can vary depending on the genetic markers. The cattle Bacteroidales markers may be more suitable for determining recent fecal contamination than cattle mtDNA.


Asunto(s)
Escherichia coli , Agua Dulce , Humanos , Bovinos , Animales , Escherichia coli/genética , Marcadores Genéticos , ARN Ribosómico 16S/genética , Agua Dulce/microbiología , Bacteroidetes/genética , ADN Mitocondrial , Agua/análisis , Heces/microbiología , Microbiología del Agua , Contaminación del Agua/análisis
8.
Environ Pollut ; 333: 121950, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37279818

RESUMEN

Soil solarization (SS) is a technique for managing pathogens and weeds, which involves covering with transparent plastic to increase soil temperature during summer fallow (SF). However, SS also alters the diversity of bacterial communities. Therefore, during SF, various organic modifiers are used in combination with SS to improve its efficacy. Organic amendments may contain antibiotic resistance genes (ARGs). Greenhouse vegetable production (GVP) soils are vital to ensure food security and ecological balance. However, comprehensive study on the effects of SS combined with different types of manure on ARGs in GVP soils during SF remains unclear. Therefore, this study employed high-throughput qPCR to explore the effects of different organic amendments combined with SS on the abundance changes of ARGs and mobile genetic elements (MGEs) in GVP soils during SF. The abundance and diversity of ARGs and MGEs in GVP soils with different manure fertilization and SS decreased during SF. Horizontal gene transfer via MGEs (especially integrases 45.80%) induced by changes in environmental factors (NO3--N 14.7% and NH4+-N) was the main factor responsible for the changes in ARGs. Proteobacteria (14.3%) and Firmicutes were the main potential hosts of ARGs. Network analysis suggested that Ornithinimicrobium, Idiomarina and Corynebacterium had positive correlations with aminoglycosides, MLSB, and tetracycline resistance genes. These results provide new insights to understand the fate of ARGs in the GVP soils by manure-amended combined with SS during SF, which may help to reduce the spread of ARGs.


Asunto(s)
Antibacterianos , Microbiota , Antibacterianos/análisis , Estiércol/análisis , Genes Bacterianos , Suelo , Farmacorresistencia Microbiana/genética , Microbiología del Suelo
9.
RSC Adv ; 13(21): 14190-14197, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37179990

RESUMEN

The photo-Fenton reaction provides an effective strategy for the removal of organic pollution in water environments. However, it remains a great challenge to develop photo-Fenton catalysts with high photocatalytic activity, low catalyst losses and excellent recyclability. In this work, a ß-FeOOH/TiO2/cellulose nanocomposite aerogel was fabricated as an efficient and convenient heterogeneous catalyst in the photo-Fenton system via in situ synthesis of TiO2 and ß-FeOOH NPs on a cellulose-based aerogel. The cellulose aerogel not only acted as a microreactor to prevent aggregation of particles, but also acted as a supporting material to improve the stability and reusable performance of the catalyst. Meanwhile, the synergy between TiO2 and ß-FeOOH endowed the cellulose-based nanocomposite aerogel with highly efficient photo-Fenton degradation of dyes. As a result, the composite ß-FeOOH/TiO2/cellulose aerogel displayed high photocatalytic performance. Its removal efficiency of MB reached 97.2% under weak UV light for 65 min. There is no obvious decrease in the catalytic efficiency after 5 cycles, suggesting the stability and recyclability of the composite aerogel. This study provides a novel strategy for the preparation of efficient green heterogeneous catalysts by using renewable resources, and shows composite catalyst processes have great potential in wastewater treatment.

10.
Carbohydr Polym ; 282: 119136, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35123753

RESUMEN

Immobilizing metal oxide nanoparticles onto polymer substrate could endow antibacterial performance and enhance mechanical property. In-situ strategy is extensively used to better control loading percentage, uniform distribution and particle size of nanoparticles. However, it still remains challenge in depositing stable bicomponents copper oxide nanoparticles on non-adhesive surface of cellulose hydrogel in high density. In this study, Cu2O@CuO nanospheres were in-situ deposited onto cellulose hydrogels via liquid phase reduction. Particularly, sodium hydroxide in the cellulose hydrogel severed as the precipitant, which not only save the usage of chemicals, but also enhanced binding between nanoparticles and the hydrogel. Furthermore, Cu2O@CuO nanospheres demonstrate biocidal antifouling performance against Escherichia coli by releasing biocide. After hydrolysis of precipitation layer, the exposed cellulose hydrogel exhibits fouling-resistant property for Chlorella Vulgaris due to the hydration layer on its surface. Such composites hold great promise in antifouling coatings and other applications.

11.
Artículo en Zh | MEDLINE | ID: mdl-33794618

RESUMEN

The rare entity of primary T-cell lymphoma of thyroid gland may pose great diagnostic challenges to the clinician. We report a case of malignant T-cell lymphoma of the thyroid gland that developed in a 36-year-old man with a past history of Hashimoto's thyroiditis. The chief complaint was a rapidly growing neck mass and pressure symptoms. This man, diagnosed with Hashimoto's thyroiditis for the previous several years. CT and ultrasonographic examination revealed a diffuse large thyroid gland with cervical lymphadenopathy. It was suspected that thyroid lymphoma involved regional lymph nodes. Fine needle aspiration cytology diagnosed chronic thyroiditis, and ultrasound-guided core needle biopsy was performed. Finally, peripheral T cell lymphoma was diagnosed.


Asunto(s)
Enfermedad de Hashimoto , Linfoma de Células T , Neoplasias de la Tiroides , Adulto , Biopsia con Aguja Gruesa , Enfermedad de Hashimoto/diagnóstico por imagen , Humanos , Masculino , Neoplasias de la Tiroides/diagnóstico por imagen , Ultrasonografía Intervencional
12.
Front Plant Sci ; 12: 645291, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33995444

RESUMEN

Cultivated peanut (Arachis hypogaea) is one of the most widely grown food legumes in the world, being valued for its high protein and unsaturated oil contents. Drought stress is one of the major constraints that limit peanut production. This study's objective was to identify the drought-responsive genes preferentially expressed under drought stress in different peanut genotypes. To accomplish this, four genotypes (drought tolerant: C76-16 and 587; drought susceptible: Tifrunner and 506) subjected to drought stress in a rainout shelter experiment were examined. Transcriptome sequencing analysis identified that all four genotypes shared a total of 2,457 differentially expressed genes (DEGs). A total of 139 enriched gene ontology terms consisting of 86 biological processes and 53 molecular functions, with defense response, reproductive process, and signaling pathways, were significantly enriched in the common DEGs. In addition, 3,576 DEGs were identified only in drought-tolerant lines in which a total of 74 gene ontology terms were identified, including 55 biological processes and 19 molecular functions, mainly related to protein modification process, pollination, and metabolic process. These terms were also found in shared genes in four genotypes, indicating that tolerant lines adjusted more related genes to respond to drought. Forty-three significantly enriched Kyoto Encyclopedia of Genes and Genomes pathways were also identified, and the most enriched pathways were those processes involved in metabolic pathways, biosynthesis of secondary metabolites, plant circadian rhythm, phenylpropanoid biosynthesis, and starch and sucrose metabolism. This research expands our current understanding of the mechanisms that facilitate peanut drought tolerance and shed light on breeding advanced peanut lines to combat drought stress.

13.
J Water Health ; 7(3): 484-96, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19491499

RESUMEN

Better understanding of Escherichia coli population dynamics and genetic variability in the secondary habitat is essential to improve fecal contamination monitoring and contamination pathway characterization. In this study, water samples were collected monthly over a one-year period at eight locations in the Catoma Creek watershed, a mixed land-use watershed in Central Alabama. E. coli concentrations varied from 17 to 12,650 CFU/100 ml and were well correlated with stream flow rates. Repetitive sequence-based PCR DNA fingerprinting was used to generate 271 unique DNA fingerprint patterns from 502 E. coli isolated from water samples. Cluster analysis showed an overall similarity of 32.8% across all DNA fingerprints. Multivariate analysis of variance (MANOVA) showed that E. coli genotypes had a tendency to cluster according to season and stream flow rather than sampling sites. MANOVA of a subset of data within a given season and flow rate, however, revealed some geographical differentiation between urban and rural sampling sites. The results indicate that genetic diversity of E. coli populations was not only high in the secondary habitat but also varied with season, flow conditions and, to a lesser extent, sampling location. To our knowledge, this is the first report relating E. coli genotype to stream flow.


Asunto(s)
Escherichia coli/crecimiento & desarrollo , Escherichia coli/genética , Agua Dulce/microbiología , Alabama , Agua Dulce/análisis , Genotipo , Humanos , Análisis Multivariante , Reacción en Cadena de la Polimerasa , Población Rural , Estaciones del Año , Población Urbana
14.
Sci Total Environ ; 686: 1104-1112, 2019 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-31412506

RESUMEN

Identification of fecal contamination sources in surface water has become heavily dependent on quantitative PCR (qPCR) because this technique allows for the rapid enumeration of fecal indicator bacteria as well as the detection and quantification of fecal source-associated genetic markers in the environment. Identification of contamination sources in impaired waters is a prerequisite for developing best management practices to reduce future pollution. Proper management decisions rely on the quality and interpretation of qPCR data. In this study, we developed a method to determine analytical and process lower limits of detection (LLOD) and quantification (LLOQ) using two cattle-associated genetic markers targeting Bacteroidales. Analytical LLOD (ALLOD) for both CowM2 and CowM3 genetic markers in the qPCR assay were five gene copies per reaction. Using composite fecal DNA, the analytical LLOQ (ALLOQ) determined for CowM2 and CowM3 were 78 and 195 gene copies/reaction, respectively. When plasmid DNA was used, the ALLOQ for CowM2 and CowM3 were 46 and 20 gene copies/reaction, respectively. The process LLOD (PLLOD) for CowM2 and CowM3 were 0.4 and 0.02 mg feces/filter (wet weight), respectively. Using the standard deviation value of 0.25 as a cut-off point for LLOQ in regression analysis, the process LLOQ (PLLOQ) for CowM2 and CowM3 were 3.2 and 0.3 mg feces/filter, respectively. These results indicate that CowM3 exhibited superior performance characteristics compared with CowM2 for fecal samples collected from our geographical region. Moreover, the method for calculating LLOD and LLOQ developed here can be applied to other microbial source tracking studies.


Asunto(s)
Bacteroidetes/aislamiento & purificación , Monitoreo del Ambiente/métodos , Heces/microbiología , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Microbiología del Agua , Animales , Bacterias/aislamiento & purificación , Bacteroidetes/química , Bacteroidetes/genética , Bovinos , Marcadores Genéticos , Límite de Detección
15.
Carbohydr Polym ; 223: 115059, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31426985

RESUMEN

Fast-swelling, porous cellulose hydrogels (PCHs) were generated via simple acid treatment of cellulose hydrogel prepared in NaOH/urea medium. Structural characteristics of the PCHs were investigated by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Swelling behavior was assessed by measuring the swelling kinetics in deionized water. Mechanical properties were also examined. The results showed that acid treated PCHs had many more micropores, mesopores and macropores, and PCH-6% displayed a high specific surface area of 33.98 m2/g. However, cellulose hydrogel without acid treatment had a low specific surface area (2.499 m2/g). Mechanical property of hydrogel was found to be slightly deteriorated with the improvement of porous structure. The equilibrium swelling rate of PCHs had drastically improvement after acid treatment. This porous cellulose hydrogel skeleton presents a wide range of possibilities for the further development of fast swelling cellulose-based functional hydrogel.


Asunto(s)
Celulosa/química , Hidrogeles/química , Urea/química , Ácido Acético/química , Fuerza Compresiva , Epiclorhidrina/química , Lino/química , Hidrogeles/síntesis química , Porosidad
16.
Anticancer Agents Med Chem ; 18(2): 302-311, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28901265

RESUMEN

BACKGROUND: Micelles as drug carriers are characterized by their inherent instability due to the weak physical interactions that facilitate the self-assembly of amphiphilic block copolymers. As one of the strong physical interactions, the stereocomplexation between the equal molar of enantiomeric polylactides, i.e., the poly(L-lactide) (PLLA) and poly(D-lactide) (PDLA), may be harnessed to obtain micelles with enhanced stability and drug loading capacity and consequent sustained release. AIMS/METHODS: In this paper, stereocomplexed micelles gama-PGA-g-PLA micelles) were fabricated from the stereocomplexation between poly(gama-glutamic acid)-graft-PLLA gama-PGA-g-PLA) and poly(gamaglutamic acid)-graft-PDLA gama-PGA-g-PLA). These stereocomplexed micelles exhibited a lower CMC than the corresponding enantiomeric micelles. RESULT: Furthermore, they showed higher drug loading content and drug loading efficiency in addition to more sustained drug release profile in vitro. In vivo imaging confirmed that the DiR-encapsulated stereocomplexed gama-PGA-g-PLA micelles can deliver anti-cancer drug to tumors with enhanced tissue penetration. Overall, gama-PGA-g-PLA micelles exhibited greater anti-cancer effects as compared with the free drug and the stereocomplexation may be a promising strategy for fabrication of anti-cancer drug carriers with significantly enhanced efficacy.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Doxorrubicina/farmacología , Nanopartículas/química , Poliésteres/química , Ácido Poliglutámico/análogos & derivados , Animales , Antibióticos Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Doxorrubicina/química , Portadores de Fármacos/química , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Micelas , Estructura Molecular , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/patología , Tamaño de la Partícula , Ácido Poliglutámico/química , Estereoisomerismo , Relación Estructura-Actividad , Propiedades de Superficie
17.
Sci Rep ; 7(1): 587, 2017 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-28373679

RESUMEN

Cytochrome P450 monooxygenases play a critical role in insecticide resistance by allowing resistant insects to metabolize insecticides. Previous studies revealed that two P450 genes, CYP9M10 and CYP6AA7, are not only up-regulated but also induced in resistant Culex mosquitoes. In this study, CYP9M10 and CYP6AA7 were separately co-expressed with cytochrome P450 reductase (CPR) in insect Spodoptera frugiperda (Sf9) cells using a baculovirus-mediated expression system and the enzymatic activity and metabolic ability of CYP9M10/CPR and CYP6AA7/CPR to permethrin and its metabolites, including 3-phenoxybenzoic alcohol (PBOH) and 3-phenoxybenzaldehyde (PBCHO), characterized. PBOH and PBCHO, both of which are toxic to Culex mosquito larvae, can be further metabolized by CYP9M10/CPR and CYP6AA7/CPR, with the ultimate metabolite identified here as PBCOOH, which is considerably less toxic to mosquito larvae. A cell-based MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) cytotoxicity assay revealed that Sf9 cells expressing CYP9M10/CPR or CYP6AA7/CPR increased the cell line's tolerance to permethrin, PBOH, and PBCHO. This study confirms the important role played by CYP9M10 and CYP6AA7 in the detoxification of permethrin and its metabolites PBOH and PBCHO.


Asunto(s)
Culex/efectos de los fármacos , Culex/genética , Sistema Enzimático del Citocromo P-450/genética , Familia 6 del Citocromo P450/genética , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Permetrina/farmacología , Animales , Culex/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Familia 6 del Citocromo P450/metabolismo , Activación Enzimática , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , NADPH-Ferrihemoproteína Reductasa/genética , NADPH-Ferrihemoproteína Reductasa/metabolismo
18.
Water Sci Technol ; 53(9): 45-54, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16841726

RESUMEN

The potential of anaerobic digestion in ecological and decentralised sanitation has been investigated in this research. Different anaerobic digestion systems were proposed for the treatment of sewage, grey water, black water and faeces. Moreover, mathematical models based on anaerobic digestion model no.1 (ADM1) were developed for determination of a suitable design for each system. For stable performance of an upflow anaerobic sludge blanket (UASB) reactor treating sewage, the model results indicated that optimisation of wastewater conversion to biogas (not COD removal) should be selected for determination of the hydraulic retention time (HRT) of the reactor. For the treatment of sewage or black water in a UASB septic-tank, the model results showed that the sludge removal period was the main parameter for determination of the HRT. At such HRT, both COD removal and wastewater conversion are also optimised. The model results demonstrated that for treatment of faeces in an accumulation (AC) system at temperature > or = 25 degrees C, the filling period of the system should be higher than 60 days. For maximisation of the net biogas production (i.e. reduction of biogas losses as dissolved in the effluent), the separation between grey water, urine and faeces and reduction of water consumption for faeces flushing are required. Furthermore, the faeces and kitchen organic wastes and grey water are digested in, respectively, an AC system and UASB reactor, while the urine is stored.


Asunto(s)
Modelos Teóricos , Aguas del Alcantarillado , Urbanización , Purificación del Agua/métodos , Anaerobiosis , Biomasa , Metano/química , Aguas del Alcantarillado/química , Aguas del Alcantarillado/microbiología , Purificación del Agua/instrumentación
19.
J Nematol ; 37(2): 190-7, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19262860

RESUMEN

The degradation of aldicarb, and the metabolites aldicarb sulfoxide and aldicarb sulfone, was evaluated in cotton field soils previously exposed to aldicarb. A loss of efficacy had been observed in two (LM and MS) of the three (CL) field soils as measured by R. reniformis population development and a lack of cotton yield response. Two soils were compared for the first test-one where aldicarb had been effective (CL) and the second where aldicarb had lost its efficacy (LM). The second test included all three soils: autoclaved, non-autoclaved and treated with aldicarb at 0.59 kg a.i./ha, or not treated with aldicarb. The degradation of aldicarb to aldicarb sulfoxide and then to aldicarb sulfone was measured using high-performance liquid chromatography (HPLC) in both tests. In test one, total degradation of aldicarb and its metabolites occurred within 12 days in the LM soil. Aldicarb sulfoxide and aldicarb sulfone were both present in the CL soil at the conclusion of the test at 42 days after aldicarb application. Autoclaving the LM and MS soils extended the persistence of the aldicarb metabolites as compared to the same soils not autoclaved. The rate of degradation was not changed when the CL natural soil was autoclaved. The accelerated degradation was due to more rapid degradation of aldicarb sulfoxide and appears to be biologically mediated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA