Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Genomics ; 25(1): 174, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38350871

RESUMEN

Alfalfa, an essential forage crop known for its high yield, nutritional value, and strong adaptability, has been widely cultivated worldwide. The yield and quality of alfalfa are frequently jeopardized due to environmental degradation. Lignin, a constituent of the cell wall, enhances plant resistance to abiotic stress, which often causes osmotic stress in plant cells. However, how lignin responds to osmotic stress in leaves remains unclear. This study explored the effects of osmotic stress on lignin accumulation and the contents of intermediate metabolites involved in lignin synthesis in alfalfa leaves. Osmotic stress caused an increase in lignin accumulation and the alteration of core enzyme activities and gene expression in the phenylpropanoid pathway. We identified five hub genes (CSE, CCR, CADa, CADb, and POD) and thirty edge genes (including WRKYs, MYBs, and UBPs) by integrating transcriptome and metabolome analyses. In addition, ABA and ethylene signaling induced by osmotic stress regulated lignin biosynthesis in a contradictory way. These findings contribute to a new theoretical foundation for the breeding of high-quality and resistant alfalfa varieties.


Asunto(s)
Lignina , Medicago sativa , Medicago sativa/genética , Lignina/metabolismo , Presión Osmótica , Fitomejoramiento , Perfilación de la Expresión Génica , Hojas de la Planta/metabolismo , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas
2.
Int J Biol Macromol ; 246: 125501, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37348591

RESUMEN

Alfalfa is an important forage crop. Yield and quality are frequently threatened by extreme environments such as drought and salt stress. As a component of the cell wall, lignin plays an important role in the abiotic stress response, the mechanisms of which have not been well clarified. In this study, we combined physiological, transcriptional, and metabolic analyses to reveal the changes in lignin content in alfalfa under mannitol-induced osmotic stress. Osmotic stress enhanced lignin accumulation by increasing G and S units, which was associated with increases in enzyme activities and decreases in 8 intermediate metabolites. Upon combined analysis of the transcriptome and metabolome, we identified five key structural genes and several coexpressed transcription factors, such as MYB and WRKY, which may play a core role in regulating lignin content and composition under osmotic stress. In addition, lignin synthesis was positively regulated by ABA but negatively regulated by ethylene under osmotic stress. These results provide new insight into the regulatory mechanism of lignin synthesis under abiotic stress.


Asunto(s)
Lignina , Medicago sativa , Medicago sativa/genética , Lignina/metabolismo , Presión Osmótica , Transcriptoma , Estrés Fisiológico , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA