Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(26): e2220537120, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37339225

RESUMEN

We previously demonstrated that the polycomb repressive complex 2 chromatin-modifying enzyme can directly transfer between RNA and DNA without a free-enzyme intermediate state. Simulations suggested that such a direct transfer mechanism may be generally necessary for RNA to recruit proteins to chromatin, but the prevalence of direct transfer capability is unknown. Herein, we used fluorescence polarization assays and observed direct transfer for several well-characterized nucleic acid-binding proteins: three-prime repair exonuclease 1, heterogeneous nuclear ribonucleoprotein U, Fem-3-binding factor 2, and MS2 bacteriophage coat protein. For TREX1, the direct transfer mechanism was additionally observed in single-molecule assays, and the data suggest that direct transfer occurs through an unstable ternary intermediate with partially associated polynucleotides. Generally, direct transfer could allow many DNA- and RNA-binding proteins to conduct a one-dimensional search for their target sites. Furthermore, proteins that bind both RNA and DNA might be capable of readily translocating between those ligands.


Asunto(s)
Proteínas de Unión al ADN , Polinucleótidos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , ARN/genética , Proteínas de Unión al ARN/genética , ADN/metabolismo , Cromatina
2.
Proc Natl Acad Sci U S A ; 120(23): e2220528120, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37252986

RESUMEN

The chromatin-modifying enzyme, Polycomb Repressive Complex 2 (PRC2), deposits the H3K27me3 epigenetic mark to negatively regulate expression at numerous target genes, and this activity has been implicated in embryonic development, cell differentiation, and various cancers. A biological role for RNA binding in regulating PRC2 histone methyltransferase activity is generally accepted, but the nature and mechanism of this relationship remains an area of active investigation. Notably, many in vitro studies demonstrate that RNA inhibits PRC2 activity on nucleosomes through mutually antagonistic binding, while some in vivo studies indicate that PRC2's RNA-binding activity is critical for facilitating its biological function(s). Here we use biochemical, biophysical, and computational approaches to interrogate PRC2's RNA and DNA-binding kinetics. Our findings demonstrate that PRC2-polynucleotide dissociation rates are dependent on the concentration of free ligand, indicating the potential for direct transfer between nucleic acid ligands without a free-enzyme intermediate. Direct transfer explains the variation in previously reported dissociation kinetics, allows reconciliation of prior in vitro and in vivo studies, and expands the potential mechanisms of RNA-mediated PRC2 regulation. Moreover, simulations indicate that such a direct transfer mechanism could be obligatory for RNA to recruit proteins to chromatin.


Asunto(s)
Cromatina , Complejo Represivo Polycomb 2 , Cromatina/genética , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , ARN/genética , ARN/metabolismo , ADN/genética , ADN/metabolismo , Nucleosomas/genética , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA