Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Yeast ; 33(9): 507-17, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27168121

RESUMEN

The fission yeast model system Schizosaccharomyces pombe is used to study fundamental biological processes. To continue to fill gaps in the Sz. pombe gene deletion collection, we constructed a set of 90 haploid gene deletion strains covering many previously uncharacterized genes. To begin to understand the function of these genes, we exposed this collection of strains to a battery of stress conditions. Using this information in combination with microscopy, proteomics and mini-chromosome loss assays, we identified genes involved in cell wall integrity, cytokinesis, chromosome segregation and DNA metabolism. This subset of non-essential gene deletions will add to the toolkits available for the study of biological processes in Sz. pombe. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
División Celular/fisiología , Pared Celular/fisiología , Regulación Fúngica de la Expresión Génica/fisiología , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citología , Schizosaccharomyces/fisiología , Cromosomas Fúngicos/fisiología , Eliminación de Gen , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
2.
Mol Cell Proteomics ; 12(5): 1074-86, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23297348

RESUMEN

The conserved family of Cdc14 phosphatases targets cyclin-dependent kinase substrates in yeast, mediating late mitotic signaling events. To discover substrates and regulators of the Schizosaccharomyces pombe Cdc14 phosphatase Clp1, TAP-tagged Clp1, and a substrate trapping mutant (Clp1-C286S) were purified from asynchronous and mitotic (prometaphase and anaphase) cells and binding partners were identified by 2D-LC-MS/MS. Over 100 Clp1-interacting proteins were consistently identified, over 70 of these were enriched in Clp1-C286S-TAP (potential substrates) and we and others detected Cdk1 phosphorylation sites in over half (44/73) of these potential substrates. According to GO annotations, Clp1-interacting proteins are involved in many essential cellular processes including mitosis, cytokinesis, ribosome biogenesis, transcription, and trafficking among others. We confirmed association and dephosphorylation of multiple candidate substrates, including a key scaffolding component of the septation initiation network called Cdc11, an essential kinase of the conserved morphogenesis-related NDR kinase network named Shk1, and multiple Mlu1-binding factor transcriptional regulators. In addition, we identified Sal3, a nuclear ß-importin, as the sole karyopherin required for Clp1 nucleoplasmic shuttling, a key mode of Cdc14 phosphatase regulation. Finally, a handful of proteins were more abundant in wild type Clp1-TAP versus Clp1-C286S-TAP, suggesting that they may directly regulate Clp1 signaling or serve as scaffolding platforms to localize Clp1 activity.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Proteínas Tirosina Fosfatasas/fisiología , Proteínas de Schizosaccharomyces pombe/fisiología , Schizosaccharomyces/enzimología , Transporte Activo de Núcleo Celular , Proteína Quinasa CDC2/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/enzimología , Carioferinas/metabolismo , Mapeo Peptídico , Fosforilación , Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Proteínas Tirosina Fosfatasas/química , Proteómica , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo
3.
PLoS Comput Biol ; 9(7): e1003147, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23874188

RESUMEN

Timing of cell division is coordinated by the Septation Initiation Network (SIN) in fission yeast. SIN activation is initiated at the two spindle pole bodies (SPB) of the cell in metaphase, but only one of these SPBs contains an active SIN in anaphase, while SIN is inactivated in the other by the Cdc16-Byr4 GAP complex. Most of the factors that are needed for such asymmetry establishment have been already characterized, but we lack the molecular details that drive such quick asymmetric distribution of molecules at the two SPBs. Here we investigate the problem by computational modeling and, after establishing a minimal system with two antagonists that can drive reliable asymmetry establishment, we incorporate the current knowledge on the basic SIN regulators into an extended model with molecular details of the key regulators. The model can capture several peculiar earlier experimental findings and also predicts the behavior of double and triple SIN mutants. We experimentally tested one prediction, that phosphorylation of the scaffold protein Cdc11 by a SIN kinase and the core cell cycle regulatory Cyclin dependent kinase (Cdk) can compensate for mutations in the SIN inhibitor Cdc16 with different efficiencies. One aspect of the prediction failed, highlighting a potential hole in our current knowledge. Further experimental tests revealed that SIN induced Cdc11 phosphorylation might have two separate effects. We conclude that SIN asymmetry is established by the antagonistic interactions between SIN and its inhibitor Cdc16-Byr4, partially through the regulation of Cdc11 phosphorylation states.


Asunto(s)
Schizosaccharomyces/fisiología , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Fosforilación , Schizosaccharomyces/citología , Proteínas de Schizosaccharomyces pombe/metabolismo , Huso Acromático
4.
PLoS Biol ; 8(9)2010 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-20838651

RESUMEN

Ubiquitination and deubiquitination are reciprocal processes that tune protein stability, function, and/or localization. The removal of ubiquitin and remodeling of ubiquitin chains is catalyzed by deubiquitinating enzymes (DUBs), which are cysteine proteases or metalloproteases. Although ubiquitination has been extensively studied for decades, the complexity of cellular roles for deubiquitinating enzymes has only recently been explored, and there are still several gaps in our understanding of when, where, and how these enzymes function to modulate the fate of polypeptides. To address these questions we performed a systematic analysis of the 20 Schizosaccharomyces pombe DUBs using confocal microscopy, proteomics, and enzymatic activity assays. Our results reveal that S. pombe DUBs are present in almost all cell compartments, and the majority are part of stable protein complexes essential for their function. Interestingly, DUB partners identified by our study include the homolog of a putative tumor suppressor gene not previously linked to the ubiquitin pathway, and two conserved tryptophan-aspartate (WD) repeat proteins that regulate Ubp9, a DUB that we show participates in endocytosis, actin dynamics, and cell polarity. In order to understand how DUB activity affects these processes we constructed multiple DUB mutants and find that a quintuple deletion of ubp4 ubp5 ubp9 ubp15 sst2/amsh displays severe growth, polarity, and endocytosis defects. This mutant allowed the identification of two common substrates for five cytoplasmic DUBs. Through these studies, a common regulatory theme emerged in which DUB localization and/or activity is modulated by interacting partners. Despite apparently distinct cytoplasmic localization patterns, several DUBs cooperate in regulating endocytosis and cell polarity. These studies provide a framework for dissecting DUB signaling pathways in S. pombe and may shed light on DUB functions in metazoans.


Asunto(s)
Compartimento Celular , Polaridad Celular , Endocitosis , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimología , Cromatografía Liquida , Enzimas/metabolismo , Microscopía Confocal , Proteómica , Espectrometría de Masas en Tándem , Ubiquitinación
5.
J Cell Sci ; 123(Pt 24): 4374-81, 2010 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-21098641

RESUMEN

Regulated gene expression makes an important contribution to cell cycle control mechanisms. In fission yeast, a group of genes is coordinately expressed during a late stage of the cell cycle (M phase and cytokinesis) that is controlled by common cis-acting promoter motifs named pombe cell cycle boxes (PCBs), which are bound by a trans-acting transcription factor complex, PCB binding factor (PBF). PBF contains at least three transcription factors, a MADS box protein Mbx1p and two forkhead transcription factors, Sep1p and Fkh2p. Here we show that the fission yeast Cdc14p-like phosphatase Clp1p (Flp1p) controls M-G1 specific gene expression through PBF. Clp1p binds in vivo both to Mbx1p, a MADS box-like transcription factor, and to the promoters of genes transcribed at this cell cycle time. Because Clp1p dephosphorylates Mbx1p in vitro, and is required for Mbx1p cell cycle-specific dephosphorylation in vivo, our observations suggest that Clp1p controls cell cycle-specific gene expression through binding to and dephosphorylating Mbx1p.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/genética , Regulación Fúngica de la Expresión Génica , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citología , Schizosaccharomyces/genética , Fase G1/genética , Genes Fúngicos/genética , Mitosis/genética , Modelos Genéticos , Fosforilación , Regiones Promotoras Genéticas/genética , Unión Proteica , Schizosaccharomyces/enzimología , Proteínas de Schizosaccharomyces pombe/genética
6.
Curr Biol ; 18(20): 1594-9, 2008 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-18951025

RESUMEN

Cdc14-family phosphatases play a conserved role in promoting mitotic exit and cytokinesis by dephosphorylating substrates of cyclin-dependent kinase (Cdk). Cdc14-family phosphatases have been best studied in yeast (for review, see [1, 2]), where budding yeast Cdc14 and its fission yeast homolog Clp1 are regulated partly by their localization; both proteins are thought to be sequestered in the nucleolus in interphase. Cdc14 and Clp1 are released from the nucleolus in mitosis, and in late mitosis conserved signaling pathways termed the mitotic exit network (MEN) and the septation initiation network (SIN) keeps Cdc14 and Clp1, respectively, out of the nucleolus through an unknown mechanism [3-6]. Here we show that the most downstream SIN component, the Ndr-family kinase Sid2, maintains Clp1 in the cytoplasm in late mitosis by phosphorylating Clp1 directly and thereby creating binding sites for the 14-3-3 protein Rad24. Mutation of the Sid2 phosphorylation sites on Clp1 disrupts the Clp1-Rad24 interaction and causes Clp1 to return prematurely to the nucleolus during cytokinesis. Loss of Clp1 from the cytoplasm in telophase renders cells sensitive to perturbation of the actomyosin ring but does not affect other Clp1 functions. Because all components of this pathway are conserved, this might be a broadly conserved mechanism for regulation of Cdc14-family phosphatases.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Mitosis , Proteínas Quinasas/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Proteínas 14-3-3/metabolismo , Sitios de Unión , Proteínas de Ciclo Celular/genética , Nucléolo Celular/metabolismo , Citocinesis , Citoplasma/metabolismo , Regulación Fúngica de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mutación , Fosforilación , Proteínas Quinasas/genética , Proteínas Tirosina Fosfatasas/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética
7.
Curr Biol ; 12(23): 2048-54, 2002 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-12477395

RESUMEN

The anaphase-promoting complex (APC) is a conserved multisubunit ubiquitin ligase required for the degradation of key cell cycle regulators. Components of the APC have been identified through genetic screens in both Schizosaccharomyces pombe and Saccharomyces cerevisiae as well as through biochemical purification coupled with mass spectrometric protein identification. With these approaches, 11 subunits of the core S. cerevisiae APC have been identified. Here, we have applied a tandem affinity purification approach coupled with direct analysis of the purified complexes by mass spectrometry (DALPC) to reveal additional subunits of both the S. pombe and S. cerevisiae APCs. Our data increase the total number of identified APC subunits to 13 in both yeasts and indicate that previous approaches were biased against the identification of small subunits. These results underscore the power of direct analysis of protein complexes by mass spectrometry and set the foundation for further functional and structural studies of the APC.


Asunto(s)
Ligasas/genética , Proteoma , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Complejos de Ubiquitina-Proteína Ligasa , Anafase , Ciclosoma-Complejo Promotor de la Anafase , Ligasas/aislamiento & purificación , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Schizosaccharomyces/citología , Proteínas de Schizosaccharomyces pombe/aislamiento & purificación
8.
Curr Biol ; 14(7): 579-84, 2004 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-15062098

RESUMEN

The Schizosaccharomyces pombe septation initiation network (SIN) triggers actomyosin ring constriction, septation, and cell division. It is organized at the spindle pole body (SPB) by the scaffold proteins Sid4p and Cdc11p. Here, we dissect the contributions of Sid4p and Cdc11p in anchoring SIN components and SIN regulators to the SPB. We find that Sid4p interacts with the SIN activator, Plo1p, in addition to Cdc11p and Dma1p. While the C terminus of Cdc11p is involved in binding Sid4p, its N-terminal half is involved in a wide variety of direct protein-protein interactions, including those with Spg1p, Sid2p, Cdc16p, and Cdk1p-Cdc13p. Given that the localizations of the remaining SIN components depend on Spg1p or Cdc16p, these data allow us to build a comprehensive model of SIN component organization at the SPB. FRAP experiments indicate that Sid4p and Cdc11p are stable SPB components, whereas signaling components of the SIN are dynamically associated with these structures. Our results suggest that the Sid4p-Cdc11p complex organizes a signaling hub on the SPB and that this hub coordinates cell and nuclear division.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Biológicos , Proteínas de Schizosaccharomyces pombe/metabolismo , Huso Acromático/metabolismo , Proteínas de Ciclo Celular/fisiología , División Celular/fisiología , Recuperación de Fluorescencia tras Fotoblanqueo , Immunoblotting , Proteínas Asociadas a Microtúbulos/fisiología , Mutagénesis Sitio-Dirigida , Plásmidos/genética , Pruebas de Precipitina , Unión Proteica , Schizosaccharomyces , Proteínas de Schizosaccharomyces pombe/fisiología , Huso Acromático/fisiología , Técnicas del Sistema de Dos Híbridos
9.
Mol Biol Cell ; 15(5): 2287-301, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15004232

RESUMEN

The gamma-tubulin complex, via its ability to organize microtubules, is critical for accurate chromosome segregation and cytokinesis in the fission yeast, Schizosaccharomyces pombe. To better understand its roles, we have purified the S. pombe gamma-tubulin complex. Mass spectrometric analyses of the purified complex revealed known components and identified two novel proteins (i.e., Mbo1p and Gfh1p) with homology to gamma-tubulin-associated proteins from other organisms. We show that both Mbo1p and Gfh1p localize to microtubule organizing centers. Although cells deleted for either mbo1(+) or gfh1(+) are viable, they exhibit a number of defects associated with altered microtubule function such as defects in cell polarity, nuclear positioning, spindle orientation, and cleavage site specification. In addition, mbo1Delta and gfh1Delta cells exhibit defects in astral microtubule formation and anchoring, suggesting that these proteins have specific roles in astral microtubule function. This study expands the known roles of gamma-tubulin complex components in organizing different types of microtubule structures in S. pombe.


Asunto(s)
Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/fisiología , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/fisiología , Schizosaccharomyces/ultraestructura , Tubulina (Proteína)/metabolismo , Sitios de Unión , Proteínas de Unión a Calmodulina/análisis , Proteínas de Unión a Calmodulina/genética , Proteínas de Unión a Calmodulina/metabolismo , División Celular/genética , División Celular/fisiología , Polaridad Celular/genética , Eliminación de Gen , Proteínas Fluorescentes Verdes , Espacio Intranuclear/ultraestructura , Proteínas Asociadas a Microtúbulos/metabolismo , Centro Organizador de los Microtúbulos/metabolismo , Centro Organizador de los Microtúbulos/fisiología , Microtúbulos/metabolismo , Microtúbulos/fisiología , Modelos Biológicos , Datos de Secuencia Molecular , Mapeo de Interacción de Proteínas , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Alineación de Secuencia , Huso Acromático/genética , Huso Acromático/metabolismo
10.
Cell Rep ; 14(3): 534-546, 2016 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-26776521

RESUMEN

F-BAR proteins link cellular membranes to the actin cytoskeleton in many biological processes. Here we investigated the function of the Schizosaccharomyces pombe Imp2 F-BAR domain in cytokinesis and find that it is critical for Imp2's role in contractile ring constriction and disassembly. To understand mechanistically how the F-BAR domain functions, we determined its structure, elucidated how it interacts with membranes, and identified an interaction between dimers that allows helical oligomerization and membrane tubulation. Using mutations that block either membrane binding or tubulation, we find that membrane binding is required for Imp2's cytokinetic function but that oligomerization and tubulation, activities often deemed central to F-BAR protein function, are dispensable. Accordingly, F-BARs that do not have the capacity to tubulate membranes functionally substitute for the Imp2 F-BAR, establishing that its major role is as a cell-cycle-regulated bridge between the membrane and Imp2 protein partners, rather than as a driver of membrane curvature.


Asunto(s)
Citocinesis/fisiología , Proteínas del Citoesqueleto/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Animales , Células COS , Chlorocebus aethiops , Cristalografía por Rayos X , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/genética , Dimerización , Liposomas/metabolismo , Microscopía Electrónica , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética
11.
Mol Biol Cell ; 26(2): 256-69, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25428987

RESUMEN

Schizosaccharomyces pombe cdc15 homology (PCH) family members participate in numerous biological processes, including cytokinesis, typically by bridging the plasma membrane via their F-BAR domains to the actin cytoskeleton. Two SH3 domain-containing PCH family members, Cdc15 and Imp2, play critical roles in S. pombe cytokinesis. Although both proteins localize to the contractile ring, with Cdc15 preceding Imp2, only cdc15 is an essential gene. Despite these distinct roles, the SH3 domains of Cdc15 and Imp2 cooperate in the essential process of recruiting other proteins to stabilize the contractile ring. To better understand the connectivity of this SH3 domain-based protein network at the CR and its function, we used a biochemical approach coupled to proteomics to identify additional proteins (Rgf3, Art1, Spa2, and Pos1) that are integrated into this network. Cell biological and genetic analyses of these SH3 partners implicate them in a range of activities that ensure the fidelity of cell division, including promoting cell wall metabolism and influencing cell morphogenesis.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas de Unión al GTP/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Dominios Homologos src , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/genética , División Celular , Citocinesis , Proteínas del Citoesqueleto/genética , Proteínas de Unión al GTP/genética , Redes Reguladoras de Genes , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Immunoblotting , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Confocal , Datos de Secuencia Molecular , Mutación , Unión Proteica , Proteoma/genética , Proteoma/metabolismo , Proteómica/métodos , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Homología de Secuencia de Aminoácido , Imagen de Lapso de Tiempo/métodos
12.
G3 (Bethesda) ; 5(3): 361-70, 2014 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-25552606

RESUMEN

Many fundamental biological processes are studied using the fission yeast, Schizosaccharomyces pombe. Here we report the construction of a set of 281 haploid gene deletion strains covering many previously uncharacterized genes. This collection of strains was tested for growth under a variety of different stress conditions. We identified new genes involved in DNA metabolism, completion of the cell cycle, and morphogenesis. This subset of nonessential gene deletions will add to the toolkits available for the study of biological processes in S. pombe.


Asunto(s)
División Celular/genética , Daño del ADN/genética , Eliminación de Gen , Genes Fúngicos , Schizosaccharomyces/genética , Schizosaccharomyces/citología , Schizosaccharomyces/metabolismo
13.
Mol Biol Cell ; 23(9): 1636-45, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22419817

RESUMEN

The Schizosaccharomyces pombe septation initiation network (SIN) is an Spg1-GTPase-mediated protein kinase cascade that triggers actomyosin ring constriction, septation, and cell division. The SIN is assembled at the spindle pole body (SPB) on the scaffold proteins Cdc11 and Sid4, with Cdc11 binding directly to SIN signaling components. Proficient SIN activity requires the asymmetric distribution of its signaling components to one of the two SPBs during anaphase, and Cdc11 hyperphosphorylation correlates with proficient SIN activity. In this paper, we show that the last protein kinase in the signaling cascade, Sid2, feeds back to phosphorylate Cdc11 during mitosis. The characterization of Cdc11 phosphomutants provides evidence that Sid2-mediated Cdc11 phosphorylation promotes the association of the SIN kinase, Cdc7, with the SPB and maximum SIN signaling during anaphase. We also show that Sid2 is crucial for the establishment of SIN asymmetry, indicating a positive-feedback loop is an important element of the SIN.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Quinasas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Anafase , Proteínas de Ciclo Celular/genética , Mitosis/fisiología , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Transducción de Señal
14.
Mol Biol Cell ; 23(17): 3348-56, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22809626

RESUMEN

The Schizosaccharomyces pombe checkpoint protein Dma1 couples mitotic progression with cytokinesis and is important in delaying mitotic exit and cytokinesis when kinetochores are not properly attached to the mitotic spindle. Dma1 is a ubiquitin ligase and potential functional relative of the human tumor suppressor Chfr. Dma1 delays mitotic exit and cytokinesis by ubiquitinating a scaffold protein (Sid4) of the septation initiation network, which, in turn, antagonizes the ability of the Polo-like kinase Plo1 to promote cell division. Here we identify Dnt1 as a Dma1-binding protein. Several lines of evidence indicate that Dnt1 inhibits Dma1 function during metaphase. First, Dnt1 interacts preferentially with Dma1 during metaphase. Second, Dma1 ubiquitin ligase activity and Sid4 ubiquitination are elevated in dnt1 cells. Third, the enhanced mitotic defects in dnt1Δ plo1 double mutants are partially rescued by deletion of dma1(+), suggesting that the defects in dnt1 plo1 double mutants are attributable to excess Dma1 activity. Taken together, these data show that Dnt1 acts to restrain Dma1 activity in early mitosis to allow normal mitotic progression.


Asunto(s)
Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Schizosaccharomyces pombe/antagonistas & inhibidores , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Puntos de Control del Ciclo Celular , Proteínas de Ciclo Celular/genética , División Celular , Citocinesis , Mitosis , Mutación , Proteínas Nucleares/genética , Unión Proteica , Schizosaccharomyces/citología , Schizosaccharomyces/genética , Huso Acromático/metabolismo , Ubiquitinación
15.
J Biol Chem ; 283(34): 23039-47, 2008 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-18556659

RESUMEN

Mitotic progression is driven by proteolytic destruction of securin and cyclins. These proteins are labeled for destruction by an ubiquitin-protein isopeptide ligase (E3) known as the anaphase-promoting complex or cyclosome (APC/C). The APC/C requires activators (Cdc20 or Cdh1) to efficiently recognize its substrates, which are specified by destruction (D box) and/or KEN box signals. The spindle assembly checkpoint responds to unattached kinetochores and to kinetochores lacking tension, both of which reflect incomplete biorientation of chromosomes, by delaying the onset of anaphase. It does this by inhibiting Cdc20-APC/C. Certain checkpoint proteins interact directly with Cdc20, but it remains unclear how the checkpoint acts to efficiently inhibit Cdc20-APC/C activity. In the fission yeast, Schizosaccharomyces pombe, we find that the Mad3 and Mad2 spindle checkpoint proteins interact stably with the APC/C in mitosis. Mad3 contains two KEN boxes, conserved from yeast Mad3 to human BubR1, and mutation of either of these abrogates the spindle checkpoint. Strikingly, mutation of the N-terminal KEN box abolishes incorporation of Mad3 into the mitotic checkpoint complex (Mad3-Mad2-Slp1 in S. pombe, where Slp1 is the Cdc20 homolog that we will refer to as Cdc20 hereafter) and stable association of both Mad3 and Mad2 with the APC/C. Our findings demonstrate that this Mad3 KEN box is a critical mediator of Cdc20-APC/C inhibition, without which neither Mad3 nor Mad2 can associate with the APC/C or inhibit anaphase onset.


Asunto(s)
Antígenos CD20/química , Proteínas de Ciclo Celular/fisiología , Proteínas Nucleares/fisiología , Proteínas de Schizosaccharomyces pombe/fisiología , Huso Acromático , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Alelos , Secuencia de Aminoácidos , Ciclosoma-Complejo Promotor de la Anafase , Humanos , Proteínas Mad2 , Modelos Biológicos , Datos de Secuencia Molecular , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Terciaria de Proteína , Schizosaccharomyces , Homología de Secuencia de Aminoácido
16.
Biochem Soc Trans ; 36(Pt 3): 436-8, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18481975

RESUMEN

The periodicity of CDKs (cyclin-dependent kinases) regulates most cell cycle transitions including cytokinesis. High Cdk1 activity promotes cytoskeletal rearrangements necessary for cell division while at the same time ensuring that cytokinesis does not begin before the separation of sister chromatids during anaphase. The conserved Cdc14 (cell division cycle 14)-family of phosphatases reverses Cdk phosphorylation events and therefore Cdc14 phosphatases promote the process of cytokinesis. Here, we review the elucidated roles of Cdc14 phosphatases in cytokinesis and the current outstanding questions regarding their function in this process.


Asunto(s)
División Celular , Fosfoproteínas Fosfatasas/metabolismo , Animales , Humanos , Transporte de Proteínas , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Schizosaccharomyces/citología , Schizosaccharomyces/enzimología , Transducción de Señal
17.
Mol Cell ; 28(5): 871-85, 2007 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-18082611

RESUMEN

The anaphase-promoting complex/cyclosome (APC/C) is a conserved multisubunit E3 ubiquitin (Ub) ligase required to signal the degradation of key cell-cycle regulators. Using single particle cryo-electron microscopy (cryo-EM), we have determined a three-dimensional (3D) structure of the core APC/C from Schizosaccharomyces pombe bound to the APC/C activator Slp1/Cdc20. At the 27 A resolution of our density map, the APC/C is a triangular-shaped structure, approximately 19x17x15 nm in size, with a deep internal cavity and a prominent horn-like protrusion emanating from a lip of the cavity. Using antibody labeling and mutant analysis, we have localized 12 of 13 core APC/C components, as well as the position of the activator Slp1, enabling us to propose a structural model of APC/C organization. Comparison of the APC/C with another multiprotein E3 ligase, the SCF complex, uncovers remarkable structural similarities.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/química , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Proteínas Cdc20 , Proteínas de Ciclo Celular/química , Cromatografía de Afinidad , Microscopía por Crioelectrón , Immunoblotting , Mitosis/fisiología , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación , Conformación Proteica , Schizosaccharomyces/genética , Schizosaccharomyces/crecimiento & desarrollo , Proteínas de Schizosaccharomyces pombe/química , Complejos de Ubiquitina-Proteína Ligasa/aislamiento & purificación , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/aislamiento & purificación , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
18.
J Biol Chem ; 281(43): 32284-93, 2006 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-16950791

RESUMEN

The anaphase-promoting complex/cyclosome (APC/C) is a conserved multisubunit ubiquitin ligase required for the degradation of key cell cycle regulators. The APC/C becomes active at the metaphase/anaphase transition and remains active during G(1) phase. One mechanism linked to activation of the APC/C is phosphorylation. Although many sites of mitotic phosphorylation have been identified in core components of the APC/C, the consequence of any individual phosphorylation event has not been elucidated in vivo. In this study, we show that Hcn1 is an essential core component of the fission yeast APC/C and is critical for maintaining complex integrity. Moreover, Hcn1 is a phosphoprotein in vivo. Phosphorylation of Hcn1 occurs at a single Cdk1 site in vitro and in vivo. Mutation of this site to alanine, but not aspartic acid, compromises APC/C function and leads to a specific defect in the completion of cell division.


Asunto(s)
Proteínas Fúngicas/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/fisiología , Alanina/metabolismo , Sustitución de Aminoácidos , Ciclosoma-Complejo Promotor de la Anafase , Proteínas de Ciclo Celular/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Fase G2 , Eliminación de Gen , Proteínas Fluorescentes Verdes/metabolismo , Fosforilación , Proteínas Represoras/química , Proteínas Represoras/genética , Schizosaccharomyces/citología , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética
19.
J Cell Sci ; 118(Pt 23): 5563-73, 2005 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-16291723

RESUMEN

Cytokinesis in Schizosaccharomyces pombe is accompanied by several stages of cell wall remodeling at the division site. Coincident with actomyosin ring constriction, primary and secondary septa are deposited and then the primary septum is degraded to release daughter cells from one another. These steps require the activities of glucan synthases and glucanases, respectively, which must be coordinated with one another to prevent cell lysis. The lad1-1 mutation undergoes cell lysis specifically at cell division owing to the absence of the Rgf3p Rho1-guanine nucleotide exchange factor (GEF) at the division site. Electron microscopic analysis indicates that lysis occurs only as the primary septum begins to be degraded. Overproduction of either Rho1p or the previously uncharacterized Rab-GTPase-activating protein (GAP) involved in secretion, Gyp10p, suppresses lad1-1 lethality. Rgf3p is periodically produced in an Ace2p-dependent manner and localizes to the medial region of the cell early in mitosis, a pattern of expression distinct from the highly related Rho-GEF, Rgf1p. Although rgf1+ is not an essential gene, it is synthetically lethal with rgf2-deleted cells whereas no negative genetic interactions were detected between rgf2-deleted cells and lad1-1. Our data suggest that the three closely related fission yeast Rho-GEF molecules perform two distinct essential functions. Rgf3p appears necessary to stimulate Rho1p-mediated activation of a glucan synthase crucial after septation for proper new cell-end formation.


Asunto(s)
Pared Celular/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citología , Schizosaccharomyces/metabolismo , Proteínas de Unión al GTP rho/metabolismo , División Celular/fisiología , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Mutación , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Factores de Tiempo , Proteínas de Unión al GTP rho/genética
20.
Eukaryot Cell ; 4(3): 577-87, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15755920

RESUMEN

Schizosaccharomyces pombe Dim1p is required for maintaining the steady-state level of the anaphase-promoting complex or cyclosome (APC/C) component Lid1p and thus for maintaining the steady-state level and activity of the APC/C. To gain further insight into Dim1p function, we have investigated the mechanism whereby Dim1p influences Lid1p levels. We show that S. pombe cells lacking Dim1p or Saccharomyces cerevisiae cells lacking its ortholog, Dib1p, are defective in generalized pre-mRNA splicing in vivo, a result consistent with the identification of Dim1p as a component of the purified yeast U4/U6.U5 tri-snRNP complex. Moreover, we find that Dim1p is part of a complex with the splicing factor Prp1p. However, although Dim1p is required for efficient splicing of lid1(+) pre-mRNA, circumventing the necessity for this particular function of Dim1p is insufficient for restoring normal Lid1p levels. Finally, we provide evidence that Dim1p also participates in the nuclear export of lid1(+) mRNA and that it is likely the combined loss of both of these two Dim1p functions which compromises Lid1p levels in the absence of proper Dim1p function. These data indicate that a mechanism acting at the level of mRNA impacts the functioning of the APC/C, a critical complex in controlling mitotic progression.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Empalme del ARN , ARN Mensajero/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Subunidad Apc4 del Ciclosoma-Complejo Promotor de la Anafase , Proteínas de Ciclo Celular/genética , Humanos , Sustancias Macromoleculares , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/citología , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Técnicas del Sistema de Dos Híbridos , Complejos de Ubiquitina-Proteína Ligasa/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA