Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 19(3): e1010664, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36943844

RESUMEN

Pleiotropy-when a single gene controls two or more seemingly unrelated traits-has been shown to impact genes with effects on flowering time, leaf architecture, and inflorescence morphology in maize. However, the genome-wide impact of biological pleiotropy across all maize phenotypes is largely unknown. Here, we investigate the extent to which biological pleiotropy impacts phenotypes within maize using GWAS summary statistics reanalyzed from previously published metabolite, field, and expression phenotypes across the Nested Association Mapping population and Goodman Association Panel. Through phenotypic saturation of 120,597 traits, we obtain over 480 million significant quantitative trait nucleotides. We estimate that only 1.56-32.3% of intervals show some degree of pleiotropy. We then assess the relationship between pleiotropy and various biological features such as gene expression, chromatin accessibility, sequence conservation, and enrichment for gene ontology terms. We find very little relationship between pleiotropy and these variables when compared to permuted pleiotropy. We hypothesize that biological pleiotropy of common alleles is not widespread in maize and is highly impacted by nuisance terms such as population structure and linkage disequilibrium. Natural selection on large standing natural variation in maize populations may target wide and large effect variants, leaving the prevalence of detectable pleiotropy relatively low.


Asunto(s)
Estudio de Asociación del Genoma Completo , Zea mays , Mapeo Cromosómico , Zea mays/genética , Fenotipo , Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple , Pleiotropía Genética
3.
Nat Biotechnol ; 41(1): 120-127, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36229611

RESUMEN

The genomic basis underlying the selection for environmental adaptation and yield-related traits in maize remains poorly understood. Here we carried out genome-wide profiling of the small RNA (sRNA) transcriptome (sRNAome) and transcriptome landscapes of a global maize diversity panel under dry and wet conditions and uncover dozens of environment-specific regulatory hotspots. Transgenic and molecular studies of Drought-Related Environment-specific Super eQTL Hotspot on chromosome 8 (DRESH8) and ZmMYBR38, a target of DRESH8-derived small interfering RNAs, revealed a transposable element-mediated inverted repeats (TE-IR)-derived sRNA- and gene-regulatory network that balances plant drought tolerance with yield-related traits. A genome-wide scan revealed that TE-IRs associate with drought response and yield-related traits that were positively selected and expanded during maize domestication. These results indicate that TE-IR-mediated posttranscriptional regulation is a key molecular mechanism underlying the tradeoff between crop environmental adaptation and yield-related traits, providing potential genomic targets for the breeding of crops with greater stress tolerance but uncompromised yield.


Asunto(s)
Resistencia a la Sequía , ARN Pequeño no Traducido , Zea mays/genética , Fitomejoramiento/métodos , Fenotipo , Sequías , Elementos Transponibles de ADN/genética , Estrés Fisiológico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA