Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Stroke ; 52(8): 2510-2517, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34078112

RESUMEN

Background and Purpose: Mechanical properties of thromboemboli play an important role in the efficacy of endovascular thrombectomy (EVT) for acute ischemic stroke. However, very limited data on mechanical properties of human stroke thrombi are available. We aimed to mechanically characterize thrombi retrieved with EVT, and to assess the relationship between thrombus composition and thrombus stiffness. Methods: Forty-one thrombi from 19 patients with acute stroke who underwent EVT between July and October 2019 were mechanically analyzed, directly after EVT. We performed unconfined compression experiments and determined tangent modulus at 75% strain (Et75) as a measure for thrombus stiffness. Thrombi were histologically analyzed for fibrin/platelets, erythrocytes, leukocytes, and platelets, and we assessed the relationship between histological components and Et75 with univariable and multivariable linear mixed regression. Results: Median Et75 was 560 (interquartile range, 393­1161) kPa. In the multivariable analysis, fibrin/platelets were associated with increased Et75 (aß, 9 [95% CI, 5 to 13]) kPa, erythrocytes were associated with decreased Et75% (aß, −9 [95% CI, −5 to −13]) kPa. We found no association between leukocytes and Et75. High platelet values were strongly associated with increased Et75 (aß, 56 [95% CI, 38­73]). Conclusions: Fibrin/platelet content of thrombi retrieved with EVT for acute ischemic stroke is strongly associated with increased thrombus stiffness. For thrombi with high platelet values, there was a very strong relationship with thrombus stiffness. Our data provide a basis for future research on the development of next-generation EVT devices tailored to thrombus composition.


Asunto(s)
Fenómenos Biomecánicos/fisiología , Isquemia Encefálica/cirugía , Procedimientos Endovasculares/métodos , Accidente Cerebrovascular Isquémico/cirugía , Trombectomía/métodos , Trombosis/cirugía , Anciano , Anciano de 80 o más Años , Isquemia Encefálica/patología , Isquemia Encefálica/fisiopatología , Procedimientos Endovasculares/instrumentación , Femenino , Humanos , Accidente Cerebrovascular Isquémico/patología , Accidente Cerebrovascular Isquémico/fisiopatología , Masculino , Persona de Mediana Edad , Trombectomía/instrumentación , Trombosis/patología , Trombosis/fisiopatología
2.
Sex Med Rev ; 11(3): 268-277, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37164910

RESUMEN

INTRODUCTION: Erectile dysfunction (ED) affects to some degree approximately 52% of the male population aged 40-70 years. Many men do not respond to, or are precluded from using, pharmaceutical treatments for ED and are therefore advised to consider penile prostheses. Different types of penile prosthesis are available, such as inflatable penile prostheses (IPPs). IPPs consist of a pair of inflatable cylinders inserted into the corpora cavernosa (CC). During inflation/deflation of these cylinders, the CC and other surrounding tissues such as the tunica albuginea (TA) are highly impacted. Therefore, it is critical to understand the mechanics of penile tissues for successful implantation of IPPs and to reduce tissue damage induced by IPPs. OBJECTIVES: We explored the importance of the biomechanics of penile tissues for successful IPP function and reviewed and summarized the most significant studies on penile biomechanics that have been reported to date. METHODS: We performed an extensive literature review of publications on penile biomechanics and IPP implantation. RESULTS: Indenters have been used to characterize the mechanical behavior of whole penile tissue; however, this technique applied only local deformation, which limited insights into individual tissue components. Although one reported study addressed the mechanical behavior of TA, this investigation did not consider anisotropy, and there is a notable absence of biomechanical studies on CC and CS. This lack of understanding of penile tissue biomechanics has resulted in computational models that use linear-elastic materials, despite soft tissues generally exhibiting hyperelastic behavior. Furthermore, available benchtop/synthetic models do not have tissue properties matched to those of the human penis, limiting the scope of these models for use as preclinical testbeds for IPP testing. CONCLUSION: Improved understanding of penile tissue biomechanics would assist the development of realistic benchtop/synthetic and computational models enabling the long-term performance of IPPs to be better assessed.


Asunto(s)
Disfunción Eréctil , Implantación de Pene , Prótesis de Pene , Masculino , Humanos , Implantación de Pene/métodos , Fenómenos Biomecánicos , Disfunción Eréctil/cirugía , Pene/cirugía
3.
Ann Biomed Eng ; 51(8): 1759-1768, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37071278

RESUMEN

Endovascular thrombectomy procedures are significantly influenced by the mechanical response of thrombi to the multi-axial loading imposed during retrieval. Compression tests are commonly used to determine compressive ex vivo thrombus and clot analogue stiffness. However, there is a shortage of data in tension. This study compares the tensile and compressive response of clot analogues made from the blood of healthy human donors in a range of compositions. Citrated whole blood was collected from six healthy human donors. Contracted and non-contracted fibrin clots, whole blood clots and clots reconstructed with a range of red blood cell (RBC) volumetric concentrations (5-80%) were prepared under static conditions. Both uniaxial tension and unconfined compression tests were performed using custom-built setups. Approximately linear nominal stress-strain profiles were found under tension, while strong strain-stiffening profiles were observed under compression. Low- and high-strain stiffness values were acquired by applying a linear fit to the initial and final 10% of the nominal stress-strain curves. Tensile stiffness values were approximately 15 times higher than low-strain compressive stiffness and 40 times lower than high-strain compressive stiffness values. Tensile stiffness decreased with an increasing RBC volume in the blood mixture. In contrast, high-strain compressive stiffness values increased from 0 to 10%, followed by a decrease from 20 to 80% RBC volumes. Furthermore, inter-donor differences were observed with up to 50% variation in the stiffness of whole blood clot analogues prepared in the same manner between healthy human donors.


Asunto(s)
Tromboembolia , Trombosis , Humanos , Trombectomía , Eritrocitos , Soporte de Peso/fisiología , Fuerza Compresiva/fisiología
4.
J Biomech ; 130: 110865, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34839150

RESUMEN

As a first line option in the treatment of acute ischemic stroke (AIS), direct aspiration is a fast and effective technique with promising outcomes. In silico models are widely used for design and preclinical assessment of new developed devices and therapeutic methods. Accurate modelling of the mechanical behaviour of blood clot is a key factor in the design and simulation of aspiration devices. In this study we develop a new constitutive model which incorporates the unrecoverable plastic deformation of clots. The model is developed based on the deformation-induced microstructural changes in fibrin network, including the formation and dissociation of the cross-links between fibrin fibres. The model is calibrated using previously reported experimentally measured permanent clot deformation following uniaxial stretching. The calibrated plasticity model is then used to simulate aspiration thrombectomy. Results reveal that inclusion of permanent plastic deformation results in âˆ¼ 15 % increase in clot aspiration length at an applied aspiration pressure of 100 mmHg. The constitutive law developed in this study provides a basis for improved design and evaluation of novel aspiration catheters leading to increased first-pass revascularization rate.


Asunto(s)
Accidente Cerebrovascular Isquémico/cirugía , Trombosis , Simulación por Computador , Fibrina , Humanos , Trombectomía , Resultado del Tratamiento
5.
J Biomech ; 133: 110896, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35124518

RESUMEN

Development of in-silico models of patient-specific cerebral artery networks presents several significant technical challenges: (i) The resolution and smoothness of medical CT images are much lower than the required element/cell length for FEA/CFD/FSI models; (ii) contact between vessels, and indeed self contact of high tortuosity vessel segments are not clearly identifiable from medical CT images. Commercial model construction software does not provide customised solutions for such technical challenges, with the result that accurate, efficient and automated development of patient-specific models of the cerebral vessels is not facilitated. This paper presents the development of a customised and highly automated platform for the generation of high resolution patient-specific FEA/CFD/FSI models from clinical images. This platform is used to perform the first fluid-structure-interaction patient-specific analysis of blood flow and artery deformation of an occluded cerebral vessel. Results demonstrate that in addition to flow disruption, clot occlusion significantly alters the geometry and strain distribution in the vessel network, with the blocked M2 segment undergoing axial elongation. The new computational approach presented in this study can be further developed as a clinical diagnostic tool and as a platform for thrombectomy device design.


Asunto(s)
Arterias , Trombectomía , Arterias/fisiología , Simulación por Computador , Hemodinámica , Humanos , Modelos Cardiovasculares , Programas Informáticos
6.
J Mech Behav Biomed Mater ; 135: 105462, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36116343

RESUMEN

Mechanical thrombectomy (MT) treatment of acute ischemic stroke (AIS) patients typically involves use of stent retrievers or aspiration catheters alone or in combination. For in silico trials of AIS patients, it is crucial to incorporate the possibility of thrombus fragmentation during the intervention. This study focuses on two aspects of the thrombectomy simulation: i) Thrombus fragmentation on the basis of a failure model calibrated with experimental tests on clot analogs; ii) the combined stent-retriever and aspiration catheter MT procedure is modeled by adding both the proximal balloon guide catheter and the distal access catheter. The adopted failure criterion is based on maximum principal stress threshold value. If elements of the thrombus exceed this criterion during the retrieval simulation, then they are deleted from the calculation. Comparison with in-vitro tests indicates that the simulation correctly reproduces the procedures predicting thrombus fragmentation in the case of red blood cells rich thrombi, whereas non-fragmentation is predicted for fibrin-rich thrombi. Modeling of balloon guide catheter prevents clot fragments' embolization to further distal territories during MT procedure.


Asunto(s)
Accidente Cerebrovascular Isquémico , Trombosis , Fibrina , Humanos , Stents , Trombectomía/efectos adversos , Trombectomía/métodos , Trombosis/terapia , Resultado del Tratamiento
7.
Acta Biomater ; 127: 213-228, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33812070

RESUMEN

Thrombus fragmentation during endovascular stroke treatment, such as mechanical thrombectomy, leads to downstream emboli, resulting in poor clinical outcomes. Clinical studies suggest that fragmentation risk is dependent on clot composition. This current study presents the first experimental characterization of the composition-dependent fracture properties of blood clots, in addition to the development of a predictive model for blood clot fragmentation. A bespoke experimental test-rig and compact tension specimen fabrication has been developed to measure fracture toughness of thrombus material. Fracture tests are performed on three physiologically relevant clot compositions: a high-fibrin clot made from a 5% haematocrit (H) blood mixture, a medium-fibrin clot made form a 20% H blood mixture, a low-fibrin clot made from a 40% H blood mixture. Fracture toughness is observed to significantly increase with increasing fibrin content, i.e. red blood cell-rich clots are more prone to tear during loading compared to the fibrin-rich clots. Results also reveal that the mechanical behaviour of clot analogues is significantly different in compression and tension. Finite element cohesive zone modelling of clot fracture experiments show that fibrin fibres become highly aligned in the direction perpendicular to crack propagation, providing a significant toughening mechanism. The results presented in this study provide the first characterization of the composition-dependent fracture behaviour of blood clots and are of key importance for development of next-generation thrombectomy devices and clinical strategies. STATEMENT OF SIGNIFICANCE: This study provides a characterisation of the composition-dependent fracture toughness of blood clots. This entails the development of novel experimental techniques for fabrication and testing of blood clot compact tension fracture specimens. The study also develops cohesive zone models of fracture initiation and propagation in blood clots. Results reveal that the fracture resistance of fibrin-rich clots is significantly higher than red blood cell rich clots. Simulations also reveal that stretching and realignment of the fibrin network should be included in blood clot material models in order to accurately replicate compression-tension asymmetry and fibrin enhanced fracture toughness. The results of this study have potentially important clinical implications in terms of clot fracture risk and secondary embolization during mechanical thrombectomy procedures.


Asunto(s)
Accidente Cerebrovascular , Trombosis , Eritrocitos , Fibrina , Humanos , Trombectomía
8.
Biomech Model Mechanobiol ; 20(4): 1317-1335, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33818678

RESUMEN

Mechanical thrombectomy can be significantly affected by the mechanical properties of the occluding thrombus. In this study, we provide the first characterisation of the volumetric behaviour of blood clots. We propose a new hyperelastic model for the volumetric and isochoric deformation of clot. We demonstrate that the proposed model provides significant improvements over established models in terms of accurate prediction of nonlinear stress-strain and volumetric behaviours of clots with low and high red blood cell compositions. We perform a rigorous investigation of the factors that govern clot occlusion of a tapered vessel. The motivation for such an analysis is twofold: (i) the role of clot composition on the in vivo occlusion location is an open clinical question that has significant implications for thrombectomy procedures; (ii) in vitro measurement of occlusion location in an engineered tapered tube can be used as a quick and simple methodology to assess the mechanical properties/compositions of clots. Simulations demonstrate that both isochoric and volumetric behaviours of clots are key determinants of clot lodgement location, in addition to clot-vessel friction. The proposed formulation is shown to provide accurate predictions of in vitro measurement of clot occlusion location in a silicone tapered vessel, in addition to accurately predicting the deformed shape of the clot.


Asunto(s)
Fibrina/química , Accidente Cerebrovascular/fisiopatología , Trombectomía/métodos , Trombosis/fisiopatología , Fuerza Compresiva , Simulación por Computador , Elasticidad , Eritrocitos , Análisis de Elementos Finitos , Fricción , Humanos , Técnicas In Vitro , Accidente Cerebrovascular Isquémico/fisiopatología , Resistencia al Corte , Silicio , Siliconas/química , Estrés Mecánico , Tromboembolia
9.
J Biomech ; 129: 110731, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34601216

RESUMEN

Changes in acute ischemic stroke thrombi structure and composition may result in significant differences in treatment responsiveness. Ischemic stroke patients are often treated with a thrombolytic agent to dissolve thrombi, however these patients may subsequently undergo mechanical thrombectomy to remove the occlusive clot. We set out to determine if rt-PA thrombolysis treatment of blood clots changes their mechanical properties, which in turn may impact mechanical thrombectomy. Using a design-of-experiment approach, ovine clot analogues were prepared with varying composition and further exposed to different levels of compaction force to simulate the effect of arterial blood pressure. Finally, clots were treated with three r-tPA doses for different durations. Clot mass and mechanical behaviour was analysed to assess changes due to (i) Platelet driven contraction (ii) Compaction force and (iii) Thrombolysis. Clots that were exposed to r-tPA for longer duration showed significant reduction in clot mass (p < 0.001). Exposure time to r-tPA (p < 0.001) was shown to be an independent predictor of lower clot stiffness. A decrease in energy dissipation ratio during mechanical compression was associated with longer exposure time in r-tPA (p = 0.001) and a higher platelet concentration ratio (p = 0.018). The dose of r-tPA was not a significant factor in reducing clot mass or changing mechanical properties of the clots. Fibrinolysis reduces clot stiffness which may explain increased distal clot migration observed in patients treated with r-tPA and should be considered as a potential clot modification factor before mechanical thrombectomy.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular , Trombosis , Animales , Fibrinólisis , Humanos , Ovinos , Terapia Trombolítica , Trombosis/tratamiento farmacológico
10.
Interface Focus ; 11(1): 20190123, 2021 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-33343873

RESUMEN

An acute ischaemic stroke appears when a blood clot blocks the blood flow in a cerebral artery. Intra-arterial thrombectomy, a mini-invasive procedure based on stent technology, is a mechanical available treatment to extract the clot and restore the blood circulation. After stent deployment, the clot, trapped in the stent struts, is pulled along with the stent towards a receiving catheter. Recent clinical trials have confirmed the effectiveness and safety of mechanical thrombectomy. However, the procedure requires further investigation. The aim of this study is the development of a numerical finite-element-based model of the thrombectomy procedure. In vitro thrombectomy tests are performed in different vessel geometries and one simulation for each test is carried out to verify the accuracy and reliability of the proposed numerical model. The results of the simulations confirm the efficacy of the model to replicate all the experimental setups. Clot stress and strain fields from the numerical analysis, which vary depending on the geometric features of the vessel, could be used to evaluate the possible fragmentation of the clot during the procedure. The proposed in vitro/in silico comparison aims at assessing the applicability of the numerical model and at providing validation evidence for the specific in vivo thrombectomy outcomes prediction.

11.
J Biomech ; 126: 110622, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34298290

RESUMEN

Treatment of acute ischemic stroke has been recently improved with the introduction of endovascular mechanical thrombectomy, a minimally invasive procedure able to remove a clot using aspiration devices and/or stent-retrievers. Despite the promising and encouraging results, improvements to the procedure and to the stent design are the focus of the recent efforts. Computational studies can pave the road to these improvements, providing their ability to describe and accurately reproduce a real procedure. A patient with ischemic stroke due to intracranial large vessel occlusion was selected and after the creation of the cerebral vasculature from computed tomography images and a histologic analysis to determine the clot composition, the entire thrombectomy procedure was virtually replicated. As in the real situation, the computational replica showed that two attempts were necessary to remove the clot, as a result of the position of the stent retriever with respect to the clot. Furthermore, the results indicated that clot fragmentation did not occur as the deformations were mainly in a compressive state without the possibility for clot cracks to propagate. The accurate representation of the procedure can be used as an important step for operative optimization planning and future improvements of stent designs.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular , Humanos , Stents , Accidente Cerebrovascular/cirugía , Trombectomía , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA