Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Respir Crit Care Med ; 207(8): 1030-1041, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36378114

RESUMEN

Rationale: Among patients with sepsis, variation in temperature trajectories predicts clinical outcomes. In healthy individuals, normal body temperature is variable and has decreased consistently since the 1860s. The biologic underpinnings of this temperature variation in disease and health are unknown. Objectives: To establish and interrogate the role of the gut microbiome in calibrating body temperature. Methods: We performed a series of translational analyses and experiments to determine whether and how variation in gut microbiota explains variation in body temperature in sepsis and in health. We studied patient temperature trajectories using electronic medical record data. We characterized gut microbiota in hospitalized patients using 16S ribosomal RNA gene sequencing. We modeled sepsis using intraperitoneal LPS in mice and modulated the microbiome using antibiotics, germ-free, and gnotobiotic animals. Measurements and Main Results: Consistent with prior work, we identified four temperature trajectories in patients hospitalized with sepsis that predicted clinical outcomes. In a separate cohort of 116 hospitalized patients, we found that the composition of patients' gut microbiota at admission predicted their temperature trajectories. Compared with conventional mice, germ-free mice had reduced temperature loss during experimental sepsis. Among conventional mice, heterogeneity of temperature response in sepsis was strongly explained by variation in gut microbiota. Healthy germ-free and antibiotic-treated mice both had lower basal body temperatures compared with control animals. The Lachnospiraceae family was consistently associated with temperature trajectories in hospitalized patients, experimental sepsis, and antibiotic-treated mice. Conclusions: The gut microbiome is a key modulator of body temperature variation in both health and critical illness and is thus a major, understudied target for modulating physiologic heterogeneity in sepsis.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Sepsis , Animales , Ratones , Temperatura Corporal , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , ARN Ribosómico 16S/genética
2.
Eur Respir J ; 61(2)2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36229047

RESUMEN

BACKGROUND: Critically ill patients routinely receive antibiotics with activity against anaerobic gut bacteria. However, in other disease states and animal models, gut anaerobes are protective against pneumonia, organ failure and mortality. We therefore designed a translational series of analyses and experiments to determine the effects of anti-anaerobic antibiotics on the risk of adverse clinical outcomes among critically ill patients. METHODS: We conducted a retrospective single-centre cohort study of 3032 critically ill patients, comparing patients who did and did not receive early anti-anaerobic antibiotics. We compared intensive care unit outcomes (ventilator-associated pneumonia (VAP)-free survival, infection-free survival and overall survival) in all patients and changes in gut microbiota in a subcohort of 116 patients. In murine models, we studied the effects of anaerobe depletion in infectious (Klebsiella pneumoniae and Staphylococcus aureus pneumonia) and noninfectious (hyperoxia) injury models. RESULTS: Early administration of anti-anaerobic antibiotics was associated with decreased VAP-free survival (hazard ratio (HR) 1.24, 95% CI 1.06-1.45), infection-free survival (HR 1.22, 95% CI 1.09-1.38) and overall survival (HR 1.14, 95% CI 1.02-1.28). Patients who received anti-anaerobic antibiotics had decreased initial gut bacterial density (p=0.00038), increased microbiome expansion during hospitalisation (p=0.011) and domination by Enterobacteriaceae spp. (p=0.045). Enterobacteriaceae were also enriched among respiratory pathogens in anti-anaerobic-treated patients (p<2.2×10-16). In murine models, treatment with anti-anaerobic antibiotics increased susceptibility to Enterobacteriaceae pneumonia (p<0.05) and increased the lethality of hyperoxia (p=0.0002). CONCLUSIONS: In critically ill patients, early treatment with anti-anaerobic antibiotics is associated with increased mortality. Mechanisms may include enrichment of the gut with respiratory pathogens, but increased mortality is incompletely explained by infections alone. Given consistent clinical and experimental evidence of harm, the widespread use of anti-anaerobic antibiotics should be reconsidered.


Asunto(s)
Hiperoxia , Neumonía Asociada al Ventilador , Animales , Ratones , Antibacterianos/efectos adversos , Estudios de Cohortes , Estudios Retrospectivos , Enfermedad Crítica , Neumonía Asociada al Ventilador/tratamiento farmacológico , Unidades de Cuidados Intensivos
4.
PLoS One ; 17(3): e0265023, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35298489

RESUMEN

BACKGROUND: The microbiome is an important and increasingly-studied mediator of organismal metabolism, although how the microbiome affects metabolism remains incompletely understood. Many investigators use antibiotics to experimentally perturb the microbiome. However, antibiotics have poorly understood yet profound off-target effects on behavior and diet, including food and water aversion, that can confound experiments and limit their applicability. We thus sought to determine the relative influence of microbiome modulation and off-target antibiotic effects on the behavior and metabolic activity of mice. RESULTS: Mice treated with oral antibiotics via drinking water exhibited significant weight loss in fat, liver, and muscle tissue. These mice also exhibited a reduction in water and food consumption, with marked variability across antibiotic regimens. While administration of bitter-tasting but antimicrobially-inert compounds caused a similar reduction in water consumption, this did not cause tissue weight loss or reduced food consumption. Mice administered intraperitoneal antibiotics (bypassing the gastrointestinal tract) exhibited reduced tissue weights and oral intake, comparable to the effects of oral antibiotics. Antibiotic-treated germ-free mice did not have reduced tissue weights, providing further evidence that direct microbiome modulation (rather than behavioral effects) mediates these metabolic changes. CONCLUSIONS: While oral antibiotics cause profound effects on food and water consumption, antibiotic effects on organismal metabolism are primarily mediated by microbiome modulation. We demonstrate that tissue-specific weight loss following antibiotic administration is due primarily to microbiome effects rather than food and water aversion, and identify antibiotic regimens that effectively modulate gut microbiota while minimizing off-target behavioral effects.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Antibacterianos/farmacología , Ratones , Ratones Endogámicos C57BL , Agua/farmacología , Pérdida de Peso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA