Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
J Biol Chem ; 296: 100606, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33789162

RESUMEN

In addition to maintaining cellular ER Ca2+ stores, store-operated Ca2+ entry (SOCE) regulates several Ca2+-sensitive cellular enzymes, including certain adenylyl cyclases (ADCYs), enzymes that synthesize the secondary messenger cyclic AMP (cAMP). Ca2+, acting with calmodulin, can also increase the activity of PDE1-family phosphodiesterases (PDEs), which cleave the phosphodiester bond of cAMP. Surprisingly, SOCE-regulated cAMP signaling has not been studied in cells expressing both Ca2+-sensitive enzymes. Here, we report that depletion of ER Ca2+ activates PDE1C in human arterial smooth muscle cells (HASMCs). Inhibiting the activation of PDE1C reduced the magnitude of both SOCE and subsequent Ca2+/calmodulin-mediated activation of ADCY8 in these cells. Because inhibiting or silencing Ca2+-insensitive PDEs had no such effects, these data identify PDE1C-mediated hydrolysis of cAMP as a novel and important link between SOCE and its activation of ADCY8. Functionally, we showed that PDE1C regulated the formation of leading-edge protrusions in HASMCs, a critical early event in cell migration. Indeed, we found that PDE1C populated the tips of newly forming leading-edge protrusions in polarized HASMCs, and co-localized with ADCY8, the Ca2+ release activated Ca2+ channel subunit, Orai1, the cAMP-effector, protein kinase A, and an A-kinase anchoring protein, AKAP79. Because this polarization could allow PDE1C to control cAMP signaling in a hyper-localized manner, we suggest that PDE1C-selective therapeutic agents could offer increased spatial specificity in HASMCs over agents that regulate cAMP globally in cells. Similarly, such agents could also prove useful in regulating crosstalk between Ca2+/cAMP signaling in other cells in which dysregulated migration contributes to human pathology, including certain cancers.


Asunto(s)
Arterias/citología , Calcio/metabolismo , AMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 1/metabolismo , Células Musculares/citología , Transducción de Señal , Transporte Biológico , Movimiento Celular , Regulación Enzimológica de la Expresión Génica , Humanos , Cinética
2.
J Neurophysiol ; 120(5): 2269-2281, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30089060

RESUMEN

Subfornical organ (SFO) neurons exhibit heterogeneity in current expression and spiking behavior, where the two major spiking phenotypes appear as tonic and burst firing. Insight into the mechanisms behind this heterogeneity is critical for understanding how the SFO, a sensory circumventricular organ, integrates and selectively influences physiological function. To integrate efficient methods for studying this heterogeneity, we built a single-compartment, Hodgkin-Huxley-type model of an SFO neuron that is parameterized by SFO-specific in vitro patch-clamp data. The model accounts for the membrane potential distribution and spike train variability of both tonic and burst firing SFO neurons. Analysis of model dynamics confirms that a persistent Na+ and Ca2+ currents are required for burst initiation and maintenance and suggests that a slow-activating K+ current may be responsible for burst termination in SFO neurons. Additionally, the model suggests that heterogeneity in current expression and subsequent influence on spike afterpotential underlie the behavioral differences between tonic and burst firing SFO neurons. Future use of this model in coordination with single neuron patch-clamp electrophysiology provides a platform for explaining and predicting the response of SFO neurons to various combinations of circulating signals, thus elucidating the mechanisms underlying physiological signal integration within the SFO. NEW & NOTEWORTHY Our understanding of how the subfornical organ (SFO) selectively influences autonomic nervous system function remains incomplete but theoretically results from the electrical responses of SFO neurons to physiologically important signals. We have built a computational model of SFO neurons, derived from and supported by experimental data, which explains how SFO neurons produce different electrical patterns. The model provides an efficient system to theoretically and experimentally explore how changes in the essential features of SFO neurons affect their electrical activity.


Asunto(s)
Potenciales de Acción , Canales de Calcio/metabolismo , Modelos Neurológicos , Neuronas/fisiología , Canales de Sodio/metabolismo , Órgano Subfornical/fisiología , Animales , Células Cultivadas , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley , Órgano Subfornical/citología , Órgano Subfornical/metabolismo
3.
Am J Physiol Regul Integr Comp Physiol ; 315(3): R425-R433, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29668324

RESUMEN

Inflammation is thought to play a fundamental role in the pathophysiology of hypertension and heart failure, although the mechanisms for this remain unclear. Proinflammatory cytokines, such as tumor necrosis factor-α (TNF-α), influence the subfornical organ (SFO) to modulate sympathetic activity and blood pressure. The pressor effects of TNF-α in the SFO are partially mediated by angiotensin II (ANG II) receptor type 1 (AT1R), and TNF-α is known to potentiate ANG II-induced hypertension. However, the cellular mechanism of the interaction between TNF-α and ANG II/AT1R signaling remains unknown. In the present study, we performed Ca2+ imaging on dissociated SFO neurons in vitro from male Sprague-Dawley rats to determine whether TNF-α modulates ANG II-induced increases in intracellular Ca2+ in SFO neurons. We first established that a proportion of SFO neurons respond to ANG II, an effect that required AT1R signaling and extracellular Ca2+. We then tested the hypothesis that TNF-α may modulate the effects of ANG II on SFO neurons by examining the effects of TNF-α treatment on the ANG II-induced rise in intracellular Ca2+. We discovered that TNF-α potentiated the ANG II-induced rise in intracellular Ca2+, an effect that was dependent on the duration of TNF-α treatment. Finally, we determined that this potentiation of ANG II-induced Ca2+ activity relied on tetrodotoxin-sensitive voltage-gated Na+ (vgNa+) channels. These data suggest that the potentiation of ANG II/AT1R activity by TNF-α in SFO neurons results from the previously demonstrated ability of this cytokine to modulate the activation threshold of vgNa+ currents.


Asunto(s)
Angiotensina II/farmacología , Señalización del Calcio/efectos de los fármacos , Neuronas/efectos de los fármacos , Órgano Subfornical/efectos de los fármacos , Factor de Necrosis Tumoral alfa/farmacología , Animales , Células Cultivadas , Sinergismo Farmacológico , Masculino , Potenciales de la Membrana , Neuronas/metabolismo , Ratas Sprague-Dawley , Receptor de Angiotensina Tipo 1/agonistas , Receptor de Angiotensina Tipo 1/metabolismo , Órgano Subfornical/citología , Órgano Subfornical/metabolismo , Factores de Tiempo , Canales de Sodio Activados por Voltaje/efectos de los fármacos , Canales de Sodio Activados por Voltaje/metabolismo
4.
Am J Physiol Regul Integr Comp Physiol ; 314(4): R623-R628, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29364701

RESUMEN

The newly described hypothalamic peptide, phoenixin, is produced in the hypothalamus and adenohypophysis, where it acts to control reproductive hormone secretion. Both phoenixin and its receptor GPR173 are expressed in the hypothalamic supraoptic (SON) and paraventricular (PVN) nuclei, suggesting additional, nonreproductive effects of the peptide to control vasopressin (AVP) or oxytocin (OT) secretion. Hypothalamo-neurohypophysial explants released AVP but not OT in response to phoenixin. Intracerebroventricular administration of phoenixin into conscious, unrestrained male and female rats significantly increased circulating AVP, but not OT, levels in plasma, and it increased immediate early gene expression in the supraoptic nuclei of male rats. Bath application of phoenixin in hypothalamic slice preparations resulted in depolarization of PVN neurons, indicating a direct, neural action of phoenixin in the hypothalamus. Our results suggest that the newly described, hypothalamic peptide phoenixin, in addition to its effects on hypothalamic and pituitary mechanisms controlling reproduction, may contribute to the physiological mechanisms regulating fluid and electrolyte homeostasis.


Asunto(s)
Arginina Vasopresina/metabolismo , Hormonas Hipotalámicas/farmacología , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Hormonas Peptídicas/fisiología , Animales , Arginina Vasopresina/sangre , Femenino , Regulación de la Expresión Génica , Genes fos , Hormonas Hipotalámicas/administración & dosificación , Hormonas Hipotalámicas/fisiología , Sistema Hipotálamo-Hipofisario/metabolismo , Técnicas In Vitro , Inyecciones Intraventriculares , Masculino , Potenciales de la Membrana , Oxitocina/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Ratas Sprague-Dawley , Vías Secretoras/efectos de los fármacos , Núcleo Supraóptico/efectos de los fármacos , Núcleo Supraóptico/metabolismo
5.
J Neurophysiol ; 118(3): 1532-1541, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28637815

RESUMEN

Tumor necrosis factor-α (TNF-α) is a proinflammatory cytokine implicated in cardiovascular and autonomic regulation via actions in the central nervous system. TNF-α-/- mice do not develop angiotensin II (ANG II)-induced hypertension, and administration of TNF-α into the bloodstream of rats increases blood pressure and sympathetic tone. Recent studies have shown that lesion of the subfornical organ (SFO) attenuates the hypertensive and autonomic effects of TNF-α, while direct administration of TNF-α into the SFO increases blood pressure, suggesting the SFO to be a key site for the actions of TNF-α. Therefore, we used patch-clamp techniques to examine both acute and long-term effects of TNF-α on the excitability of Sprague-Dawley rat SFO neurons. It was observed that acute bath application of TNF-α depolarized SFO neurons and subsequently increased action potential firing rate. Furthermore, the magnitude of depolarization and the proportion of depolarized SFO neurons were concentration dependent. Interestingly, following 24-h incubation with TNF-α, the basal firing rate of the SFO neurons was increased and the rheobase was decreased, suggesting that TNF-α elevates SFO neuron excitability. This effect was likely mediated by the transient sodium current, as TNF-α increased the magnitude of the current and lowered its threshold of activation. In contrast, TNF-α did not appear to modulate either the delayed rectifier potassium current or the transient potassium current. These data suggest that acute and long-term TNF-α exposure elevates SFO neuron activity, providing a basis for TNF-α hypertensive and sympathetic effects.NEW & NOTEWORTHY Considerable recent evidence has suggested important links between inflammation and the pathological mechanisms underlying hypertension. The present study describes cellular mechanisms through which acute and long-term exposure of tumor necrosis factor-α (TNF-α) influences the activity of subfornical organ neurons by modulating the voltage-gated transient Na+ current. This provides critical new information regarding the specific pathological mechanisms through which inflammation and TNF-α in particular may result in the development of hypertension.


Asunto(s)
Potenciales de Acción , Neuronas/efectos de los fármacos , Órgano Subfornical/efectos de los fármacos , Factor de Necrosis Tumoral alfa/farmacología , Animales , Células Cultivadas , Masculino , Neuronas/metabolismo , Neuronas/fisiología , Canales de Potasio/metabolismo , Ratas , Ratas Sprague-Dawley , Canales de Sodio/metabolismo , Órgano Subfornical/citología , Órgano Subfornical/fisiología
6.
Am J Physiol Regul Integr Comp Physiol ; 312(4): R511-R519, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28100478

RESUMEN

Adropin is a peptide hormone with cardiovascular and metabolic roles in the periphery, including effects on glucose and lipid homeostasis. Central administration of adropin has been shown to inhibit water intake in rats; however, the site at which central adropin acts has yet to be elucidated. The hypothalamic paraventricular nucleus (PVN), a critical autonomic control center, plays essential roles in the control of fluid balance, energy homeostasis, and cardiovascular regulation, and is, therefore, a potential target for centrally acting adropin. In the present study, we used whole cell patch-clamp techniques to examine the effects of adropin on the excitability of neurons within the PVN. All three neuronal subpopulations (magnocellular, preautonomic, and neuroendocrine) in the PVN were found to be responsive to bath-application of 10 nM adropin, which elicited responses in 68% of cells tested (n = 57/84). The majority of cells (58%) depolarized (5.2 ± 0.3 mV; n = 49) in response to adropin, whereas the remaining responsive cells (10%) hyperpolarized (-3.4 ± 0.5 mV; n = 8), effects that were shown to be concentration-dependent. Additionally, responses were maintained in the presence of 1 µM TTX in 75% of cells tested (n = 9/12), and voltage-clamp analysis revealed that adropin had no effect on the amplitude or frequency of excitatory or inhibitory postsynaptic currents (EPSCs and IPSCs) in PVN neurons, suggesting the peptide exerts direct, postsynaptic actions on these neurons. Collectively, these findings suggest central adropin may exert its physiological effects through direct actions on neurons in the PVN.


Asunto(s)
Potenciales de Acción/fisiología , Proteínas Sanguíneas/metabolismo , Potenciales Postsinápticos Excitadores/fisiología , Neuronas/fisiología , Núcleo Hipotalámico Paraventricular/fisiología , Péptidos/metabolismo , Transmisión Sináptica/fisiología , Animales , Células Cultivadas , Masculino , Ratas , Ratas Sprague-Dawley
7.
Am J Physiol Regul Integr Comp Physiol ; 312(2): R253-R262, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28003212

RESUMEN

The subfornical organ (SFO) is a critical circumventricular organ involved in the control of cardiovascular and metabolic homeostasis. Despite the plethora of circulating signals continuously sensed by the SFO, studies investigating how these signals are integrated are lacking. In this study, we use patch-clamp techniques to investigate how the traditionally classified "cardiovascular" hormone ANG II, "metabolic" hormone CCK and "metabolic" signal glucose interact and are integrated in the SFO. Sequential bath application of CCK (10 nM) and ANG (10 nM) onto dissociated SFO neurons revealed that 63% of responsive SFO neurons depolarized to both CCK and ANG; 25% depolarized to ANG only; and 12% hyperpolarized to CCK only. We next investigated the effects of glucose by incubating and recording neurons in either hypoglycemic, normoglycemic, or hyperglycemic conditions and comparing the proportions of responses to ANG (n = 55) or CCK (n = 83) application in each condition. A hyperglycemic environment was associated with a larger proportion of depolarizing responses to ANG (χ2, P < 0.05), and a smaller proportion of depolarizing responses along with a larger proportion of hyperpolarizing responses to CCK (χ2, P < 0.01). Our data demonstrate that SFO neurons excited by CCK are also excited by ANG and that glucose environment affects the responsiveness of neurons to both of these hormones, highlighting the ability of SFO neurons to integrate multiple metabolic and cardiovascular signals. These findings have important implications for this structure's role in the control of various autonomic functions during hyperglycemia.


Asunto(s)
Fenómenos Fisiológicos Cardiovasculares , Redes y Vías Metabólicas/fisiología , Neuronas/fisiología , Órgano Subfornical/fisiología , Angiotensina II/metabolismo , Animales , Células Cultivadas , Colecistoquinina/metabolismo , Glucosa/metabolismo , Masculino , Análisis de Flujos Metabólicos , Ratas , Ratas Sprague-Dawley , Transducción de Señal/fisiología
8.
Exp Physiol ; 102(11): 1373-1379, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28762571

RESUMEN

NEW FINDINGS: What is the topic of this review? We describe roles of crucial signalling molecules in the paraventricular nucleus of the hypothalamus and highlight recent data suggesting sex-specific changes in the expression of crucial signalling molecules and their receptors, which may underlie sex differences in both cardiovascular and metabolic function. What advances does it highlight? This review highlights the integrative capacity of the paraventricular nucleus in mediating cardiovascular and metabolic effects by integrating information from multiple signalling molecules. It also proposes that these signalling molecules have sex-specific differential gene expression, indicating the importance of considering these differences in our ongoing search to understand the female-male differences in the regulation of crucial autonomic systems. Many traditional cardiovascular hormones have been implicated in metabolic function. Conversely, many hormones traditionally involved in metabolic regulation have an effect on cardiovascular function. Many of these signalling molecules exert such effects through specific actions in the paraventricular nucleus, an integrative autonomic control centre located in the hypothalamus. Here, we focus on four cardiovascular/metabolic peptide hormones that signal within the paraventricular nucleus, namely angiotensin II, orexin, adiponectin and nesfatin-1. Each of these hormones has specific electrophysiological effects on paraventricular nucleus neurons that can be related to its physiological actions. In addition, we introduce preliminary transcriptomic data indicating that the genes for some of these hormones and their receptors have sex-specific differential expression.


Asunto(s)
Adiponectina/metabolismo , Angiotensina II/metabolismo , Proteínas de Unión al Calcio/metabolismo , Sistema Cardiovascular/metabolismo , Proteínas de Unión al ADN/metabolismo , Metabolismo Energético , Proteínas del Tejido Nervioso/metabolismo , Orexinas/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Transducción de Señal , Adiponectina/genética , Angiotensina II/genética , Animales , Proteínas de Unión al Calcio/genética , Proteínas de Unión al ADN/genética , Metabolismo Energético/genética , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , Proteínas del Tejido Nervioso/genética , Nucleobindinas , Orexinas/genética , Factores Sexuales , Transducción de Señal/genética , Transcriptoma
9.
J Physiol ; 594(6): 1581-9, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26227400

RESUMEN

The subfornical organ (SFO) is a circumventricular organ recognized for its ability to sense and integrate hydromineral and hormonal circulating fluid balance signals, information which is transmitted to central autonomic nuclei to which SFO neurons project. While the role of SFO was once synonymous with physiological responses to osmotic, volumetric and cardiovascular challenge, recent data suggest that SFO neurons also sense and integrate information from circulating signals of metabolic status. Using microarrays, we have confirmed the expression of receptors already described in the SFO, and identified many novel transcripts expressed in this circumventricular organ including receptors for many of the critical circulating energy balance signals such as adiponectin, apelin, endocannabinoids, leptin, insulin and peptide YY. This transcriptome analysis also identified SFO transcripts, the expressions of which are significantly changed by either 72 h dehydration, or 48 h starvation, compared to fed and euhydrated controls. Expression and potential roles for many of these targets are yet to be confirmed and elucidated. Subsequent validation of data for adiponectin and leptin receptors confirmed that receptors for both are expressed in the SFO, that discrete populations of neurons in this tissue are functionally responsive to these adipokines, and that such responsiveness is regulated by physiological state. Thus, transcriptomic analysis offers great promise for understanding the integrative complexity of these physiological systems, especially with development of technologies allowing description of the entire transcriptome of single, carefully phenotyped, SFO neurons. These data will ultimately elucidate mechanisms through which these uniquely positioned neurons respond to and integrate complex circulating signals.


Asunto(s)
Sistema Nervioso Autónomo/fisiología , Órgano Subfornical/metabolismo , Transcriptoma , Animales , Metabolismo Energético , Humanos , Órgano Subfornical/fisiología
10.
Am J Physiol Regul Integr Comp Physiol ; 310(5): R440-8, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26719304

RESUMEN

The area postrema (AP) is a circumventricular organ with important roles in central autonomic regulation. This medullary structure has been shown to express the leptin receptor and has been suggested to have a role in modulating peripheral signals, indicating energy status. Using RT-PCR, we have confirmed the presence of mRNA for the leptin receptor, ObRb, in AP, and whole cell current-clamp recordings from dissociated AP neurons demonstrated that leptin influenced the excitability of 51% (42/82) of AP neurons. The majority of responsive neurons (62%) exhibited a depolarization (5.3 ± 0.7 mV), while the remaining affected cells (16/42) demonstrated hyperpolarizing effects (-5.96 ± 0.95 mV). Amylin was found to influence the same population of AP neurons. To elucidate the mechanism(s) of leptin and amylin actions in the AP, we used fluorescence resonance energy transfer (FRET) to determine the effect of these peptides on cAMP levels in single AP neurons. Leptin and amylin were found to elevate cAMP levels in the same dissociated AP neurons (leptin: % total FRET response 25.3 ± 4.9, n = 14; amylin: % total FRET response 21.7 ± 3.1, n = 13). When leptin and amylin were coapplied, % total FRET response rose to 53.0 ± 8.3 (n = 6). The demonstration that leptin and amylin influence a subpopulation of AP neurons and that these two signaling molecules have additive effects on single AP neurons to increase cAMP, supports a role for the AP as a central nervous system location at which these circulating signals may act through common intracellular signaling pathways to influence central control of energy balance.


Asunto(s)
Área Postrema/efectos de los fármacos , Leptina/farmacología , Neuronas/efectos de los fármacos , Receptores de Leptina/agonistas , Potenciales de Acción , Animales , Área Postrema/citología , Área Postrema/metabolismo , Células Cultivadas , AMP Cíclico/metabolismo , Metabolismo Energético/efectos de los fármacos , Técnicas In Vitro , Polipéptido Amiloide de los Islotes Pancreáticos/farmacología , Masculino , Neuronas/metabolismo , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Receptores de Leptina/genética , Receptores de Leptina/metabolismo , Sistemas de Mensajero Secundario/efectos de los fármacos , Factores de Tiempo
11.
J Neurophysiol ; 114(3): 1641-51, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26180118

RESUMEN

Hydrogen sulfide (H2S) is an endogenously found gasotransmitter that has been implicated in a variety of beneficial physiological functions. This study was performed to investigate the cellular mechanisms underlying actions of H2S previously observed in subfornical organ (SFO), where H2S acts to regulate blood pressure through a depolarization of the membrane and an overall increase in the excitability of SFO neurons. We used whole cell patch-clamp electrophysiology in the voltage-clamp configuration to analyze the effect of 1 mM NaHS, an H2S donor, on voltage-gated potassium, sodium, and calcium currents. We observed no effect of NaHS on potassium currents; however, both voltage-gated sodium currents (persistent and transient) and the N-type calcium current had a depolarized activation curve and an enhanced peak-induced current in response to a series of voltage-step and ramp protocols run in the control and NaHS conditions. These effects were not responsible for the previously observed depolarization of the membrane potential, as depolarizing effects of H2S were still observed following block of these conductances with tetrodotoxin (5 µM) and ω-conotoxin-GVIA (100 nM). Our studies are the first to investigate the effect of H2S on a variety of voltage-gated conductances in a single brain area, and although they do not explain mechanisms underlying the depolarizing actions of H2S on SFO neurons, they provide evidence of potential mechanisms through which this gasotransmitter influences the excitability of neurons in this important brain area as a consequence of the modulation of multiple ion channels.


Asunto(s)
Sulfuro de Hidrógeno/metabolismo , Neuronas/metabolismo , Sodio/metabolismo , Órgano Subfornical/metabolismo , Canales de Sodio Activados por Voltaje/metabolismo , Potenciales de Acción , Animales , Calcio/metabolismo , Células Cultivadas , Masculino , Neuronas/efectos de los fármacos , Neuronas/fisiología , Ratas , Ratas Sprague-Dawley , Órgano Subfornical/citología , Órgano Subfornical/fisiología , Sulfuros/farmacología
12.
Am J Physiol Regul Integr Comp Physiol ; 308(8): R690-9, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25695291

RESUMEN

The nucleus of the solitary tract (NTS) is a medullary integrative center with critical roles in the coordinated control of energy homeostasis. Here, we used whole cell current-clamp recordings on rat NTS neurons in slice preparation to identify the presence of physiologically relevant glucose-sensing neurons. The majority of NTS neurons (n = 81) were found to be glucose-responsive, with 35% exhibiting a glucose-excited (GE) phenotype (mean absolute change in membrane potential: 9.5 ± 1.1 mV), and 21% exhibiting a glucose-inhibited (GI) response (mean: 6.3 ± 0.7 mV). Furthermore, we found glucose-responsive cells are preferentially influenced by the anorexigenic peptide α-melanocyte-stimulating hormone (α-MSH), but not nesfatin-1. Accordingly, alterations in glycemic state have profound effects on the responsiveness of NTS neurons to α-MSH, but not to nesfatin-1. Indeed, NTS neurons showed increasing responsiveness to α-MSH as extracellular glucose concentrations were decreased, and in hypoglycemic conditions, all NTS neurons were depolarized by α-MSH (mean 10.6 ± 3.2 mV; n = 8). Finally, decreasing levels of extracellular glucose correlated with a significant hyperpolarization of the baseline membrane potential of NTS neurons, highlighting the modulatory effect of glucose on the baseline excitability of cells in this region. Our findings reveal individual NTS cells are capable of integrating multiple sources of metabolically relevant inputs, highlight the rapid capacity for plasticity in medullary melanocortin circuits, and emphasize the critical importance of physiological recording conditions for electrophysiological studies pertaining to the central control of energy homeostasis.


Asunto(s)
Proteínas de Unión al Calcio/farmacología , Proteínas de Unión al ADN/farmacología , Metabolismo Energético/efectos de los fármacos , Glucosa/metabolismo , Proteínas del Tejido Nervioso/farmacología , Neuronas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Núcleo Solitario/efectos de los fármacos , alfa-MSH/farmacología , Animales , Homeostasis , Técnicas In Vitro , Masculino , Potenciales de la Membrana , Inhibición Neural , Neuronas/metabolismo , Nucleobindinas , Fenotipo , Ratas Sprague-Dawley , Núcleo Solitario/citología , Núcleo Solitario/metabolismo , Factores de Tiempo
13.
Curr Hypertens Rep ; 17(12): 93, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26531751

RESUMEN

The mechanisms involved in cardiovascular regulation, such as vascular tone, fluid volume and blood osmolarity, are quite often mediated by signals circulating in the periphery, such as angiotensin II and sodium concentration. Research has identified areas within the lamina terminalis (LT), specifically the sensory circumventricular organs (CVOs), the subfornical organ and the organum vasculosum of the lamina terminalis, as playing crucial roles detecting and integrating information derived from these circulating signals. The median preoptic nucleus (MnPO) is a third integrative structure within the LT that influences cardiovascular homeostasis, although to date, its role is not as clearly elucidated. More recent studies have demonstrated that the CVOs are not only essential in the detection of traditional cardiovascular signals but also signals primarily considered to be important in the regulation of metabolic, reproductive and inflammatory processes that have now also been implicated in cardiovascular regulation. In this review, we highlight the critical roles played by the LT in the detection and integration of circulating signals that provide critical feedback control information contributing to cardiovascular regulation.


Asunto(s)
Fenómenos Fisiológicos Cardiovasculares , Hipertensión/fisiopatología , Animales , Homeostasis , Humanos , Hipotálamo/fisiopatología , Sodio/metabolismo
14.
Am J Physiol Regul Integr Comp Physiol ; 306(5): R363-73, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24430886

RESUMEN

The subfornical organ (SFO) is an important sensory circumventricular organ implicated in the regulation of fluid homeostasis and energy balance. We investigated whether the SFO is activated by the hormone cholecystokinin (CCK). CCK1 and CCK2 receptors were identified in the SFO by RT-PCR. Dissociated SFO neurons that responded to CCK (40/77), were mostly depolarized (9.2 ± 0.9 mV, 30/77), but some were hyperpolarized (-7.3 ± 1.1 mV, 10/77). We next examined the responses of SFO neurons in vivo to CCK (16 µg/kg ip), in the presence and absence of CCK1 or CCK2 receptor antagonists (devazepide; 600 µg/kg and L-365,260; 100 µg/kg, respectively), using the functional activation markers c-Fos and phosphorylated extracellular signal-related kinase (p-ERK). The nucleus of the solitary tract (NTS) served as a control for CCK-induced activity. There was a significant increase in c-Fos expression in the NTS (259.2 ± 20.8 neurons) compared with vehicle (47.5 ± 2.5). Similarly, in the SFO, c-Fos was expressed in 40.5 ± 10.6 neurons in CCK-treated compared with 6.6 ± 2.7 in vehicle-treated rats (P < 0.01). Devazepide significantly reduced the effects of CCK in the NTS but not in SFO. L-365,260 blocked the effects of CCK in both brain regions. CCK increased the number of p-ERK neurons in NTS (27.0 ± 4.0) as well as SFO (18.0 ± 4.0), compared with vehicle (8.0 ± 2.6 and 4.3 ± 0.6, respectively; P < 0.05). Both devazepide and L-365,260 reduced CCK-induced p-ERK in NTS, but only L-365,260 reduced it in the SFO. In conclusion, the SFO represents a novel brain region at which circulating CCK may act via CCK2 receptors to influence central autonomic control.


Asunto(s)
Colecistoquinina/farmacología , Fragmentos de Péptidos/farmacología , Órgano Subfornical/efectos de los fármacos , Animales , Benzodiazepinonas/farmacología , Devazepida/farmacología , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación de la Expresión Génica/fisiología , Genes fos/genética , Genes fos/fisiología , Antagonistas de Hormonas/farmacología , Masculino , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Compuestos de Fenilurea/farmacología , ARN/genética , ARN/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Colecistoquinina/antagonistas & inhibidores , Receptores de Colecistoquinina/genética , Receptores de Colecistoquinina/metabolismo , Órgano Subfornical/citología , Órgano Subfornical/fisiología
15.
J Physiol ; 591(13): 3421-32, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23629509

RESUMEN

Apelin is an adipocyte-derived hormone involved in the regulation of water balance, food intake and the cardiovascular system partially through actions in the CNS. The subfornical organ (SFO) is a circumventricular organ with identified roles in body fluid homeostasis, cardiovascular control and energy balance. The SFO lacks a normal blood-brain barrier, and is thus able to detect circulating signalling molecules such as angiotensin II and leptin. In this study, we investigated actions of apelin-13, the predominant apelin isoform in brain and circulatory system, on the excitability of dissociated SFO neurons using electrophysiological approaches, and determined the cardiovascular consequences of direct administration into the SFO of anaesthetized rats. Whole cell current clamp recording revealed that bath-applied 100 nm apelin-13 directly influences the excitability of the majority of SFO neurons by eliciting either depolarizing (31.8%, mean 7.0 ± 0.8 mV) or hyperpolarizing (28.6%, mean -10.4 ± 1.8 mV) responses. Using voltage-clamp techniques, we also identified modulatory actions of apelin-13 on specific ion channels, demonstrating that apelin-13 activates a non-selective cationic conductance to depolarize SFO neurons while activation of the delayed rectifier potassium conductance underlies hyperpolarizing effects. In anaesthetized rats, microinjection of apelin into SFO decreased both blood pressure (BP) (mean area under the curve -1492.3 ± 357.1 mmHg.s, n = 5) and heart rate (HR) (-32.4 ± 10.39 beats, n = 5). Our data suggest that circulating apelin can directly affect BP and HR as a consequence of the ability of this peptide to modulate the excitability of SFO neurons.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/farmacología , Neuronas/efectos de los fármacos , Órgano Subfornical/citología , Potenciales de Acción/efectos de los fármacos , Animales , Presión Sanguínea/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Técnicas In Vitro , Masculino , Potenciales de la Membrana/efectos de los fármacos , Microinyecciones , Neuronas/fisiología , Ratas , Ratas Sprague-Dawley , Órgano Subfornical/fisiología
16.
Am J Physiol Regul Integr Comp Physiol ; 302(11): R1297-304, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22442196

RESUMEN

Nesfatin-1 has been identified as one of the most potent centrally acting anorexigenic peptides, and it has also been shown to play important roles in the control of cardiovascular function. In situ hybridization and immunohistochemical studies have revealed the expression of nesfatin-1 throughout the brain and, in particular, in the medullary autonomic gateway known as the nucleus of the solitary tract (NTS). The present study was thus undertaken to explore the cellular correlates and functional roles of nesfatin-1 actions in the medial NTS (mNTS). Using current-clamp electrophysiology recordings from mNTS neurons in slice preparation, we show that bath-applied nesfatin-1 directly influences the excitability of the majority of mNTS neurons by eliciting either depolarizing (42%, mean: 7.8 ± 0.8 mV) or hyperpolarizing (21%, mean: -8. 2 ± 1.0 mV) responses. These responses were observed in all electrophysiologically defined cell types in the NTS and were site specific and concentration dependent. Furthermore, post hoc single cell reverse transcriptase polymerase reaction revealed a depolarizing action of nesfatin-1 on NPY and nucleobindin-2-expressing mNTS neurons. We have also correlated these actions of nesfatin-1 on neuronal membrane potential with physiological outcomes, using in vivo microinjection techniques to demonstrate that nesfatin-1 microinjected into the mNTS induces significant increases in both blood pressure (mean AUC = 3354.1 ± 750.7 mmHg·s, n = 6) and heart rate (mean AUC = 164.8 ± 78.5 beats, n = 6) in rats. Our results provide critical insight into the circuitry and physiology involved in the profound effects of nesfatin-1 and highlight the NTS as a key structure mediating these autonomic actions.


Asunto(s)
Presión Sanguínea/fisiología , Encéfalo/fisiología , Proteínas de Unión al Calcio/fisiología , Proteínas de Unión al ADN/fisiología , Frecuencia Cardíaca/fisiología , Potenciales de la Membrana/fisiología , Proteínas del Tejido Nervioso/fisiología , Neuronas/fisiología , Núcleo Solitario/fisiología , Animales , Fenómenos Fisiológicos Cardiovasculares , Electrofisiología , Microinyecciones , Nucleobindinas , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
17.
J Physiol ; 589(Pt 18): 4457-71, 2011 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-21708906

RESUMEN

We investigated the mechanisms responsible for increased blood pressure and sympathetic nerve activity (SNA) caused by 2-3 days dehydration (DH) both in vivo and in situ preparations. In euhydrated (EH) rats, systemic application of the AT(1) receptor antagonist Losartan and subsequent pre-collicular transection (to remove the hypothalamus) significantly reduced thoracic (t)SNA. In contrast, in DH rats, Losartan, followed by pre-collicular and pontine transections, failed to reduce tSNA, whereas transection at the medulla-spinal cord junction massively reduced tSNA. In DH but not EH rats, selective inhibition of the commissural nucleus tractus solitarii (cNTS) significantly reduced tSNA. Comparable data were obtained in both in situ and in vivo (anaesthetized/conscious) rats and suggest that following chronic dehydration, the control of tSNA transfers from supra-brainstem structures (e.g. hypothalamus) to the medulla oblongata, particularly the cNTS. As microarray analysis revealed up-regulation of AP1 transcription factor JunD in the dehydrated cNTS, we tested the hypothesis that AP1 transcription factor activity is responsible for dehydration-induced functional plasticity. When AP1 activity was blocked in the cNTS using a viral vector expressing a dominant negative FosB, cNTS inactivation was ineffective. However, tSNA was decreased after pre-collicular transection, a response similar to that seen in EH rats. Thus, the dehydration-induced switch in control of tSNA from hypothalamus to cNTS seems to be mediated via activation of AP1 transcription factors in the cNTS. If AP1 activity is blocked in the cNTS during dehydration, sympathetic activity control reverts back to forebrain regions. This unique reciprocating neural structure-switching plasticity between brain centres emphasizes the multiple mechanisms available for the adaptive response to dehydration.


Asunto(s)
Presión Sanguínea/fisiología , Deshidratación/fisiopatología , Prosencéfalo/fisiología , Rombencéfalo/fisiología , Sistema Nervioso Simpático/fisiología , Animales , Antihipertensivos/farmacología , Presión Sanguínea/efectos de los fármacos , Enfermedad Crónica , Hipotálamo/fisiología , Losartán/farmacología , Masculino , Bulbo Raquídeo/fisiología , Modelos Animales , Plasticidad Neuronal/fisiología , Ratas , Ratas Sprague-Dawley , Núcleo Solitario/fisiología
18.
Exp Physiol ; 96(5): 495-504, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21317217

RESUMEN

The area postrema (AP) is a sensory circumventricular organ characterized by extensive fenestrated vasculature and neurons which are capable of detecting circulating signals of osmotic, cardiovascular, immune and metabolic status. The AP can communicate these messages via efferent projections to brainstem and hypothalamic structures that are able to orchestrate an appropriate response. We have used microarrays to profile the transcriptome of the AP in the Sprague-Dawley (SD) and Wistar-Kyoto rat and present here a comprehensive catalogue of gene expression, focusing specifically on the population of ion channels, receptors and G protein-coupled receptors expressed in this sensory tissue; of the G protein-coupled receptors expressed in the rat AP, we identified ∼36% that are orphans, having no established ligand. We have also looked at the ways in which the AP transcriptome responds to the physiological stressors of 72 h dehydration (DSD) and 48 h fasting (FSD) and have performed microarrays in these conditions. Comparison between the DSD and SD or between FSD and SD revealed only a modest number of AP genes that are regulated by these homeostatic challenges. The expression levels of a much larger number of genes are altered in the spontaneously hypertensive rat AP compared with the normotensive Wistar-Kyoto control rat, however. Finally, analysis of these 'hypertension-related' elements revealed genes that are involved in the regulation of both blood pressure and immune function and as such are excellent targets for further study.


Asunto(s)
Área Postrema/fisiología , Hambre/fisiología , Sed/fisiología , Animales , Deshidratación/genética , Deshidratación/metabolismo , Retroalimentación Sensorial/fisiología , Expresión Génica , Perfilación de la Expresión Génica , Canales Iónicos/genética , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Ratas Sprague-Dawley , Receptores Acoplados a Proteínas G/genética , Transducción de Señal/genética
19.
Handb Clin Neurol ; 180: 203-215, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34225930

RESUMEN

In this chapter, we review the extensive literature describing the roles of the subfornical organ (SFO), the organum vasculosum of the terminalis (OVLT), and the median preoptic nucleus (MnPO), comprising the lamina terminalis, in cardiovascular regulation and the control of fluid balance. We present this information in the context of both historical and technological developments which can effectively be overlaid upon each other. We describe intrinsic anatomy and connectivity and then discuss early work which described how circulating angiotensin II acts at the SFO to stimulate drinking and increase blood pressure. Extensive studies using direct administration and lesion approaches to highlight the roles of all regions of the lamina terminalis are then discussed. At the cellular level we describe c-Fos and electrophysiological work, which has highlighted an extensive group of circulating hormones which appear to influence the activity of specific neurons in the SFO, OVLT, and MnPO. We highlight optogenetic studies that have begun to unravel the complexities of circuitries underlying physiological outcomes, especially those related to different components of drinking. Finally, we describe the somewhat limited human literature supporting conclusions that these structures play similar and potentially important roles in human physiology.


Asunto(s)
Organum Vasculosum , Órgano Subfornical , Humanos , Hipotálamo , Área Preóptica , Equilibrio Hidroelectrolítico
20.
Eur J Neurosci ; 32(5): 826-39, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20646064

RESUMEN

The mechanism and routes through which peptide tyrosine-tyrosine (PYY) exerts its anorectic effects are still largely unknown. In the present study, we investigated the roles of the area postrema (AP), subfornical organ (SFO) and vagus nerve in mediating the anorectic effect of PYY using PYY(3-36) conjugated to human serum albumin (PYY(3-36)-HSA) in rats. PYY(3-36)-HSA is a large molecule that does not penetrate the blood-brain barrier, and thus provides a useful tool to discriminate between the central (brain) and peripheral actions of this peptide. PYY(3-36)-HSA induced significant reductions in food and body weight gain up to 24 h after administration. The anorectic effect of PYY(3-36)-HSA was delayed for 2 h in rats in which both AP and SFO were ablated, while lesion of either of these circumventricular organs in isolation did not influence the feeding responses to PYY(3-36)-HSA. The PYY(3-36)-HSA-induced anorectic effect was also reduced during the 3- to 6-h period following subdiaphragmatic vagotomy. Lesions of AP, SFO and AP/SFO as well as subdiaphragmatic vagotomy blunted PYY(3-36)-HSA-induced expression of c-fos mRNA in specific brain structures including the bed nucleus of stria terminalis, central amygdala, lateral-external parabrachial nucleus and medial nucleus of the solitary tract. In addition, subdiaphragmatic vagotomy inhibited the neuronal activation induced by PYY(3-36)-HSA in AP and SFO. These findings suggest that the anorectic effect and brain neuronal activation induced by PYY(3-36)-HSA are dependent on integrity of AP, SFO and subdiaphragmatic vagus nerve.


Asunto(s)
Depresores del Apetito/farmacología , Regulación del Apetito/fisiología , Ingestión de Alimentos/fisiología , Péptido YY/farmacología , Albúmina Sérica/farmacología , Órgano Subfornical/fisiología , Animales , Regulación del Apetito/efectos de los fármacos , Área Postrema/efectos de los fármacos , Área Postrema/fisiología , Glucemia/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Encéfalo/fisiología , Ingestión de Líquidos/efectos de los fármacos , Ingestión de Alimentos/efectos de los fármacos , Humanos , Insulina/sangre , Masculino , Neuronas/fisiología , Fragmentos de Péptidos , Péptido YY/química , Ratas , Ratas Wistar , Albúmina Sérica/química , Órgano Subfornical/efectos de los fármacos , Vagotomía/métodos , Nervio Vago/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA