Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 650: 81-86, 2023 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-36773343

RESUMEN

Skeletal muscle differentiation involves activation of quiescent satellite cells to proliferate, differentiate and fuse to form new myofibers; this requires coordination of myogenic transcription factors. Myogenic transcription is tightly regulated by various intracellular signaling pathways, which include members of the protein kinase D (PKD) family. PKD is a family of serine-threonine kinases that regulate gene expression, protein secretion, cell proliferation, differentiation and inflammation. PKD is a unique PKC family member that shares distant sequence homology to calcium-regulated kinases and plays an important role in muscle physiology. In this report, we show that class I histone deacetylase (HDAC) inhibition, and in particular HDAC8 inhibition, attenuated PKD phosphorylation in skeletal C2C12 myoblasts in response to phorbol ester, angiotensin II and dexamethasone signaling independent of changes in total PKD protein expression. As class I HDACs and PKD signaling are requisite for myocyte differentiation, these data suggest that HDAC8 functions as a potential feedback regulator of PKD phosphorylation to control myogenic gene expression.


Asunto(s)
Mioblastos Esqueléticos , Proteína Quinasa C , Fosforilación , Proteína Quinasa C/metabolismo , Transducción de Señal/fisiología , Mioblastos Esqueléticos/metabolismo
2.
Am J Physiol Heart Circ Physiol ; 321(2): H382-H389, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34142888

RESUMEN

Pulmonary hypertension (PH) is associated with structural remodeling of pulmonary arteries (PAs) because of excessive proliferation of fibroblasts, endothelial cells, and smooth muscle cells (SMCs). The peptide hormone angiotensin II (ANG II) contributes to pulmonary vascular remodeling, in part, through its ability to trigger extracellular signal-regulated kinase (ERK1/2) activation. Here, we demonstrate that the ERK1/2 phosphatase, dual-specificity phosphatase 5 (DUSP5), functions as a negative regulator of ANG II-mediated SMC proliferation and PH. In contrast to wild-type controls, Dusp5 null mice infused with ANG II developed PH and right ventricular (RV) hypertrophy. PH in Dusp5 null mice was associated with thickening of the medial layer of small PAs, suggesting an in vivo role for DUSP5 as a negative regulator of ANG II-dependent SMC proliferation. Consistent with this, overexpression of DUSP5 blocked ANG II-mediated proliferation of cultured human pulmonary artery SMCs (hPASMCs) derived from patients with idiopathic PH or from failed donor controls. Collectively, the data support a role for DUSP5 as a feedback inhibitor of ANG II-mediated ERK signaling and PASMC proliferation and suggest that disruption of this circuit leads to adverse cardiopulmonary remodeling.NEW & NOTEWORTHY Dual-specificity phosphatases (DUSPs) serve critical roles in the regulation of mitogen-activated protein kinases, but their functions in the cardiovascular system remain poorly defined. Here, we provide evidence that DUSP5, which resides in the nucleus and specifically dephosphorylates extracellular signal-regulated kinase (ERK1/2), blocks pulmonary vascular smooth muscle cell proliferation. In response to angiotensin II infusion, mice lacking DUSP5 develop pulmonary hypertension and right ventricular cardiac hypertrophy. These findings illustrate DUSP5-mediated suppression of ERK signaling in the lungs as a protective mechanism.


Asunto(s)
Proliferación Celular/genética , Fosfatasas de Especificidad Dual/genética , Ventrículos Cardíacos/metabolismo , Hipertensión Pulmonar/genética , Hipertrofia Ventricular Derecha/genética , Miocitos del Músculo Liso/metabolismo , Arteria Pulmonar/metabolismo , Remodelación Vascular/genética , Angiotensina II/farmacología , Animales , Estudios de Casos y Controles , Células Cultivadas , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/patología , Ventrículos Cardíacos/fisiopatología , Humanos , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/fisiopatología , Hipertrofia Ventricular Derecha/inducido químicamente , Hipertrofia Ventricular Derecha/fisiopatología , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Noqueados , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/efectos de los fármacos , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/patología , Arteria Pulmonar/fisiopatología , Vasoconstrictores/farmacología
3.
Bioinformatics ; 36(6): 1663-1667, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31688895

RESUMEN

MOTIVATION: Our previous study has shown that ERBB2 is overexpressed in the organoid model of MCF10A when the stiffness of the microenvironment is increased to that of high mammographic density (MD). We now aim to identify key transcription factors (TFs) and functional enhancers that regulate processes associated with increased stiffness of the microenvironment in the organoid models of premalignant human mammary cell lines. RESULTS: 3D colony organizations and the cis-regulatory networks of two human mammary epithelial cell lines (184A1 and MCF10A) are investigated as a function of the increased stiffness of the microenvironment within the range of MD. The 3D colonies are imaged using confocal microscopy, and the morphometries of colony organizations and heterogeneity are quantified as a function of the stiffness of the microenvironment using BioSig3D. In a surrogate assay, colony organizations are profiled by transcriptomics. Transcriptome data are enriched by correlative analysis with the computed morphometric indices. Next, a subset of enriched data are processed against publicly available ChIP-Seq data using Model-based Analysis of Regulation of Gene Expression to predict regulatory transcription factors. This integrative analysis of morphometric and transcriptomic data predicted YY1 as one of the cis-regulators in both cell lines as a result of the increased stiffness of the microenvironment. Subsequent experiments validated that YY1 is expressed at protein and mRNA levels for MCF10A and 184A1, respectively. Also, there is a causal relationship between activation of YY1 and ERBB2 when YY1 is overexpressed at the protein level in MCF10A. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Densidad de la Mama , Organoides , Factor de Transcripción YY1 , Línea Celular , Biología Computacional , Humanos , Factores de Transcripción
4.
Molecules ; 26(5)2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33668293

RESUMEN

Plant-based foods, like fruits, vegetables, whole grains, legumes, nuts, seeds and other foodstuffs, have been deemed as heart healthy. The chemicals within these plant-based foods, i.e., phytochemicals, are credited with protecting the heart. However, the mechanistic actions of phytochemicals, which prevent clinical endpoints, such as pathological cardiac hypertrophy, are still being elucidated. We sought to characterize the overlapping and divergent mechanisms by which 18 selected phytochemicals prevent phenylephrine- and phorbol 12-myristate 13-acetate-mediated cardiomyocyte enlargement. Of the tested 18 compounds, six attenuated PE- and PMA-mediated enlargement of neonatal rat ventricular myocytes. Cell viability assays showed that apigenin, baicalein, berberine hydrochloride, emodin, luteolin and quercetin dihydrate did not reduce cell size through cytotoxicity. Four of the six phytochemicals, apigenin, baicalein, berberine hydrochloride and emodin, robustly inhibited stress-induced hypertrophy and were analyzed further against intracellular signaling and genome-wide changes in mRNA expression. The four phytochemicals differentially regulated mitogen-activated protein kinases and protein kinase D. RNA-sequencing further showed divergence in gene regulation, while pathway analysis demonstrated overlap in the regulation of inflammatory pathways. Combined, this study provided a comprehensive analysis of cardioprotective phytochemicals. These data highlight two defining observations: (1) that these compounds predominantly target divergent gene pathways within cardiac myocytes and (2) that regulation of overlapping signaling and gene pathways may be of particular importance for the anti-hypertrophic actions of these phytochemicals. Despite these new findings, future works investigating rodent models of heart failure are still needed to understand the roles for these compounds in the heart.


Asunto(s)
Cardiomegalia/tratamiento farmacológico , Cardiotónicos/farmacología , Miocitos Cardíacos/efectos de los fármacos , Fitoquímicos/farmacología , Animales , Cardiomegalia/metabolismo , Cardiotónicos/química , Células Cultivadas , Miocitos Cardíacos/metabolismo , Fitoquímicos/química , Ratas , Ratas Sprague-Dawley
5.
Am J Physiol Endocrinol Metab ; 318(5): E765-E778, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32228320

RESUMEN

We report here that the neuronal (pro)renin receptor (PRR), a key component of the brain renin-angiotensin system (RAS), plays a critical role in the central regulation of high-fat-diet (HFD)-induced metabolic pathophysiology. The neuronal PRR is known to mediate formation of the majority of angiotensin (ANG) II, a key bioactive peptide of the RAS, in the central nervous system and to regulate blood pressure and cardiovascular function. However, little is known about neuronal PRR function in overnutrition-related metabolic physiology. Here, we show that PRR deletion in neurons reduces blood pressure, neurogenic pressor activity, and fasting blood glucose and improves glucose tolerance without affecting food intake or body weight following a 16-wk HFD. Mechanistically, we found that a HFD increases levels of the PRR ligand (pro)renin in the circulation and hypothalamus and of ANG II in the hypothalamus, indicating activation of the brain RAS. Importantly, PRR deletion in neurons reduced astrogliosis and activation of the astrocytic NF-κB p65 (RelA) in the arcuate nucleus and the ventromedial nucleus of the hypothalamus. Collectively, our findings indicate that the neuronal PRR plays essential roles in overnutrition-related metabolic pathophysiology.


Asunto(s)
Astrocitos/metabolismo , Glucemia/metabolismo , Presión Sanguínea/fisiología , Hipotálamo/metabolismo , Inflamación/metabolismo , Neuronas/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Peso Corporal/fisiología , Dieta Alta en Grasa , Ingestión de Alimentos/fisiología , Ratones , Ratones Noqueados , Receptores de Superficie Celular/genética , Renina/metabolismo , Receptor de Prorenina
6.
Nat Prod Rep ; 37(5): 653-676, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31993614

RESUMEN

Covering: up to 2020Chronic, low-grade inflammation is linked to aging and has been termed "inflammaging". Inflammaging is considered a key contributor to the development of metabolic dysfunction and a broad spectrum of diseases or disorders including declines in brain and heart function. Genome-wide association studies (GWAS) coupled with epigenome-wide association studies (EWAS) have shown the importance of diet in the development of chronic and age-related diseases. Moreover, dietary interventions e.g. caloric restriction can attenuate inflammation to delay and/or prevent these diseases. Common themes in these studies entail the use of phytochemicals (plant-derived compounds) or the production of short chain fatty acids (SCFAs) as epigenetic modifiers of DNA and histone proteins. Epigenetic modifications are dynamically regulated and as such, serve as potential therapeutic targets for the treatment or prevention of age-related disease. In this review, we will focus on the role for natural products that include phytochemicals and short chain fatty acids (SCFAs) as regulators of these epigenetic adaptations. Specifically, we discuss regulators of methylation, acetylation and acylation, in the protection from chronic inflammation driven metabolic dysfunction and deterioration of neurocognitive and cardiac function.


Asunto(s)
Envejecimiento/genética , Productos Biológicos/farmacología , Inflamación/tratamiento farmacológico , Enfermedades Neurodegenerativas/prevención & control , Fitoquímicos/farmacología , Acetilación , Envejecimiento/efectos de los fármacos , Productos Biológicos/química , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/prevención & control , Dieta , Epigénesis Genética , Ácidos Grasos Volátiles/farmacología , Humanos , Inflamación/etiología , Inflamación/genética , Enfermedades Neurodegenerativas/etiología
7.
Int J Mol Sci ; 21(11)2020 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-32503339

RESUMEN

Cardiovascular diseases (CVD) are the main cause of death worldwide and create a substantial financial burden. Emerging studies have begun to focus on epigenetic targets and re-establishing healthy gut microbes as therapeutic options for the treatment and prevention of CVD. Phytochemicals, commonly found in fruits and vegetables, have been shown to exert a protective effect against CVD, though their mechanisms of action remain incompletely understood. Of interest, phytochemicals such as curcumin, resveratrol and epigallocatechin gallate (EGCG) have been shown to regulate both histone acetylation and microbiome re-composition. The purpose of this review is to highlight the microbiome-epigenome axis as a therapeutic target for food bioactives in the prevention and/or treatment of CVD. Specifically, we will discuss studies that highlight how the three phytochemicals above alter histone acetylation leading to global changes in gene expression and CVD protection. Then, we will expand upon these phytochemicals to discuss the impact of phytochemical-microbiome-histone acetylation interaction in CVD.


Asunto(s)
Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/metabolismo , Epigénesis Genética , Histonas/química , Microbiota , Acetilación , Animales , Enfermedades Cardiovasculares/microbiología , Catequina/análogos & derivados , Catequina/farmacología , Curcumina/farmacología , Histona Desacetilasas/metabolismo , Humanos , Fitoquímicos/farmacología , Procesamiento Proteico-Postraduccional , Resveratrol/farmacología
8.
J Cell Physiol ; 234(2): 1088-1098, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30203485

RESUMEN

Bovine mammary epithelial cells (MAC-Ts) are a common cell line for the study of mammary epithelial inflammation; these cells are used to mechanistically elucidate molecular underpinnings that contribute to bovine mastitis. Bovine mastitis is the most prevalent form of disease in dairy cattle that culminates in annual losses of two billion dollars for the US dairy industry. Thus, there is an urgent need for improved therapeutic strategies. Histone deacetylase (HDAC) inhibitors are efficacious in rodent models of inflammation, yet their role in bovine mammary cells remain unclear. HDACs have traditionally been studied in the regulation of nucleosomal DNA, in which deacetylation of histones impact chromatin accessibility and gene expression. Using MAC-T cells stimulated with tumor necrosis factor α (TNF-α) as a model for mammary cell inflammation, we report that inhibition of HDACs1 and 2 (HDAC1/2) attenuated TNF-α-mediated inflammatory gene expression. Of note, we report that HDAC1/2-mediated inflammatory gene expression was partly regulated by c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) phosphorylation. Here, we report that HDAC1/2 inhibition attenuated JNK and ERK activation and thus inflammatory gene expression. These data suggest that HDACs1 and 2 regulate inflammatory gene expression via canonical (i.e., gene expression) and noncanonical (e.g., signaling dependent) mechanisms. Whereas, further studies using primary cell lines and animal models are needed. Our combined data suggest that HDAC1/2-specific inhibitors may prove efficacious for the treatment of bovine mastitis.


Asunto(s)
Células Epiteliales/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Glándulas Mamarias Animales/efectos de los fármacos , Factor de Necrosis Tumoral alfa/farmacología , Animales , Antiinflamatorios/uso terapéutico , Bovinos , Línea Celular , Células Epiteliales/enzimología , Femenino , Regulación de la Expresión Génica , Histona Desacetilasa 1/antagonistas & inhibidores , Histona Desacetilasa 2/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/uso terapéutico , Glándulas Mamarias Animales/enzimología , Mastitis Bovina/tratamiento farmacológico , Mastitis Bovina/enzimología , Fosforilación , Transducción de Señal
9.
Int J Mol Sci ; 20(1)2018 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-30597863

RESUMEN

Approximately five million United States (U.S.) adults are diagnosed with heart failure (HF), with eight million U.S. adults projected to suffer from HF by 2030. With five-year mortality rates following HF diagnosis approximating 50%, novel therapeutic treatments are needed for HF patients. Pre-clinical animal models of HF have highlighted histone deacetylase (HDAC) inhibitors as efficacious therapeutics that can stop and potentially reverse cardiac remodeling and dysfunction linked with HF development. HDACs remove acetyl groups from nucleosomal histones, altering DNA-histone protein electrostatic interactions in the regulation of gene expression. However, HDACs also remove acetyl groups from non-histone proteins in various tissues. Changes in histone and non-histone protein acetylation plays a key role in protein structure and function that can alter other post translational modifications (PTMs), including protein phosphorylation. Protein phosphorylation is a well described PTM that is important for cardiac signal transduction, protein activity and gene expression, yet the functional role for acetylation-phosphorylation cross-talk in the myocardium remains less clear. This review will focus on the regulation and function for acetylation-phosphorylation cross-talk in the heart, with a focus on the role for HDACs and HDAC inhibitors as regulators of acetyl-phosphorylation cross-talk in the control of cardiac function.


Asunto(s)
Histona Desacetilasas/metabolismo , Miocardio/metabolismo , Acetilación , Animales , Biomarcadores , Corazón/efectos de los fármacos , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Fosforilación , Procesamiento Proteico-Postraduccional
10.
J Mol Cell Cardiol ; 112: 74-82, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28886967

RESUMEN

Class I histone deacetylase (HDAC) inhibitors block hypertrophy and fibrosis of the heart by suppressing pathological signaling and gene expression programs in cardiac myocytes and fibroblasts. The impact of HDAC inhibition in unstressed cardiac cells remains poorly understood. Here, we demonstrate that treatment of cultured cardiomyocytes with small molecule HDAC inhibitors leads to dramatic induction of c-Jun amino-terminal kinase (JNK)-interacting protein-1 (JIP1) mRNA and protein expression. In contrast to prior findings, elevated levels of endogenous JIP1 in cardiomyocytes failed to significantly alter JNK signaling or cardiomyocyte hypertrophy. Instead, HDAC inhibitor-mediated induction of JIP1 was required to stimulate expression of the kinesin heavy chain family member, KIF5A. We provide evidence for an HDAC-dependent regulatory circuit that promotes formation of JIP1:KIF5A:microtubule complexes that regulate intracellular transport of cargo such as autophagosomes. These findings define a novel role for class I HDACs in the control of the JIP1/kinesin axis in cardiomyocytes, and suggest that HDAC inhibitors could be used to alter microtubule transport in the heart.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Histona Desacetilasas/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Animales Recién Nacidos , Autofagia/efectos de los fármacos , Cardiomegalia/genética , Cardiomegalia/patología , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Inhibidores de Histona Desacetilasas/farmacología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Microtúbulos/efectos de los fármacos , Modelos Biológicos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
11.
Ann Rheum Dis ; 76(1): 277-285, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27457515

RESUMEN

OBJECTIVES: Non-selective histone deacetylase (HDAC) inhibitors (HDACi) have demonstrated anti-inflammatory properties in both in vitro and in vivo models of rheumatoid arthritis (RA). Here, we investigated the potential contribution of specific class I and class IIb HDACs to inflammatory gene expression in RA fibroblast-like synoviocytes (FLS). METHODS: RA FLS were incubated with pan-HDACi (ITF2357, givinostat) or selective HDAC1/2i, HDAC3/6i, HDAC6i and HDAC8i. Alternatively, FLS were transfected with HDAC3, HDAC6 or interferon (IFN)-α/ß receptor alpha chain (IFNAR1) siRNA. mRNA expression of interleukin (IL)-1ß-inducible genes was measured by quantitative PCR (qPCR) array and signalling pathway activation by immunoblotting and DNA-binding assays. RESULTS: HDAC3/6i, but not HDAC1/2i and HDAC8i, significantly suppressed the majority of IL-1ß-inducible genes targeted by pan-HDACi in RA FLS. Silencing of HDAC3 expression reproduced the effects of HDAC3/6i on gene regulation, contrary to HDAC6-specific inhibition and HDAC6 silencing. Screening of the candidate signal transducers and activators of transcription (STAT)1 transcription factor revealed that HDAC3/6i abrogated STAT1 Tyr701 phosphorylation and DNA binding, but did not affect STAT1 acetylation. HDAC3 activity was required for type I IFN production and subsequent STAT1 activation in FLS. Suppression of type I IFN release by HDAC3/6i resulted in reduced expression of a subset of IFN-dependent genes, including the chemokines CXCL9 and CXCL11. CONCLUSIONS: Inhibition of HDAC3 in RA FLS largely recapitulates the effects of pan-HDACi in suppressing inflammatory gene expression, including type I IFN production in RA FLS. Our results identify HDAC3 as a potential therapeutic target in the treatment of RA and type I IFN-driven autoimmune diseases.


Asunto(s)
Artritis Reumatoide/metabolismo , Fibroblastos/metabolismo , Histona Desacetilasas/fisiología , Mediadores de Inflamación/metabolismo , Sinoviocitos/metabolismo , Acetilación , Adulto , Anciano , Artritis Reumatoide/genética , Artritis Reumatoide/inmunología , Células Cultivadas , Regulación hacia Abajo/fisiología , Femenino , Regulación de la Expresión Génica/inmunología , Regulación de la Expresión Génica/fisiología , Histona Desacetilasas/genética , Humanos , Interferón beta/biosíntesis , Interleucina-1beta/biosíntesis , Interleucina-1beta/genética , Masculino , Persona de Mediana Edad , Fosforilación , Factor de Transcripción STAT1/metabolismo , Membrana Sinovial/metabolismo , Sinoviocitos/inmunología
12.
Proc Natl Acad Sci U S A ; 111(48): E5178-86, 2014 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-25404307

RESUMEN

Proteinopathy causes cardiac disease, remodeling, and heart failure but the pathological mechanisms remain obscure. Mutated αB-crystallin (CryAB(R120G)), when expressed only in cardiomyocytes in transgenic (TG) mice, causes desmin-related cardiomyopathy, a protein conformational disorder. The disease is characterized by the accumulation of toxic misfolded protein species that present as perinuclear aggregates known as aggresomes. Previously, we have used the CryAB(R120G) model to determine the underlying processes that result in these pathologic accumulations and to explore potential therapeutic windows that might be used to decrease proteotoxicity. We noted that total ventricular protein is hypoacetylated while hyperacetylation of α-tubulin, a substrate of histone deacetylase 6 (HDAC6) occurs. HDAC6 has critical roles in protein trafficking and autophagy, but its function in the heart is obscure. Here, we test the hypothesis that tubulin acetylation is an adaptive process in cardiomyocytes. By modulating HDAC6 levels and/or activity genetically and pharmacologically, we determined the effects of tubulin acetylation on aggregate formation in CryAB(R120G) cardiomyocytes. Increasing HDAC6 accelerated aggregate formation, whereas siRNA-mediated knockdown or pharmacological inhibition ameliorated the process. HDAC inhibition in vivo induced tubulin hyperacetylation in CryAB(R120G) TG hearts, which prevented aggregate formation and significantly improved cardiac function. HDAC6 inhibition also increased autophagic flux in cardiomyocytes, and increased autophagy in the diseased heart correlated with increased tubulin acetylation, suggesting that autophagy induction might underlie the observed cardioprotection. Taken together, our data suggest a mechanistic link between tubulin hyperacetylation and autophagy induction and points to HDAC6 as a viable therapeutic target in cardiovascular disease.


Asunto(s)
Adaptación Fisiológica , Autofagia , Miocardio/metabolismo , Tubulina (Proteína)/metabolismo , Acetilación/efectos de los fármacos , Animales , Animales Recién Nacidos , Células Cultivadas , Corazón/efectos de los fármacos , Corazón/fisiología , Histona Desacetilasa 6 , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Ácidos Hidroxámicos/farmacología , Immunoblotting , Inmunohistoquímica , Ratones Transgénicos , Microscopía Electrónica , Mutación , Miocardio/citología , Miocardio/ultraestructura , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Cultivo Primario de Células , Ratas Sprague-Dawley , Vorinostat , Cadena B de alfa-Cristalina/genética , Cadena B de alfa-Cristalina/metabolismo
13.
J Cell Physiol ; 231(7): 1562-74, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26566083

RESUMEN

Knowledge concerning mechanisms that control proliferation and differentiation of preadipocytes is essential to our understanding of adipocyte hyperplasia and the development of obesity. Evidence has shown that temporal regulation of mitogen-activated protein kinase (MAPK) phosphorylation and dephosphorylation is critical for coupling extracellular stimuli to cellular growth and differentiation. Using differentiating 3T3-L1 preadipocytes as a model of adipocyte hyperplasia, we examined a role for dual-specificity phosphatase 1 (DUSP1) on the timely modulation of MAPK signaling during states of growth arrest, proliferation, and differentiation. Using real-time reverse transcription PCR (qRT-PCR), we report that DUSP1 is induced during early preadipocyte proliferation concomitant with ERK and p38 dephosphorylation. As deactivation of ERK and p38 is essential for the progression of adipocyte differentiation, we further showed that de novo mRNA synthesis was required for ERK and p38 dephosphorylation, suggesting a role for "inducible" phosphatases in regulating MAPK signaling. Pharmacological and genetic inhibition of DUSP1 markedly increased ERK and p38 phosphorylation during early adipocyte differentiation. Based on these findings, we postulated that loss of DUSP1 would block adipocyte hyperplasia. However, genetic loss of DUSP1 was not sufficient to prevent preadipocyte proliferation or differentiation, suggesting a role for other phosphatases in the regulation of adipogenesis. In support of this, qRT-PCR identified several MAPK-specific DUSPs induced during early (DUSP2, -4, -5, & -6), mid (DUSP4 & -16) and late (DUSP9) stages of adipocyte differentiation. Collectively, these data suggest an important role for DUSPs in regulating MAPK dephosphorylation, with an emphasis on DUSP1, during early adipogenesis.


Asunto(s)
Diferenciación Celular/genética , Fosfatasa 1 de Especificidad Dual/biosíntesis , Quinasas MAP Reguladas por Señal Extracelular/genética , Obesidad/genética , Células 3T3-L1 , Adipocitos/citología , Adipocitos/metabolismo , Animales , Proliferación Celular/genética , Fosfatasa 1 de Especificidad Dual/genética , Quinasas MAP Reguladas por Señal Extracelular/biosíntesis , Humanos , Sistema de Señalización de MAP Quinasas/genética , Ratones , Obesidad/patología , Fosforilación , ARN Mensajero/biosíntesis
14.
Am J Physiol Lung Cell Mol Physiol ; 311(1): L124-34, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27233998

RESUMEN

Epigenetic mechanisms, including DNA methylation and histone acetylation, regulate gene expression in idiopathic pulmonary arterial hypertension (IPAH). These mechanisms can modulate expression of extracellular superoxide dismutase (SOD3 or EC-SOD), a key vascular antioxidant enzyme, and loss of vascular SOD3 worsens outcomes in animal models of pulmonary arterial hypertension. We hypothesized that SOD3 gene expression is decreased in patients with IPAH due to aberrant DNA methylation and/or histone deacetylation. We used lung tissue and pulmonary artery smooth muscle cells (PASMC) from subjects with IPAH at transplantation and from failed donors (FD). Lung SOD3 mRNA expression and activity was decreased in IPAH vs. FD. In contrast, mitochondrial SOD (Mn-SOD or SOD2) protein expression was unchanged and intracellular SOD activity was unchanged. Using bisulfite sequencing in genomic lung or PASMC DNA, we found the methylation status of the SOD3 promoter was similar between FD and IPAH. Furthermore, treatment with 5-aza-2'-deoxycytidine did not increase PASMC SOD3 mRNA, suggesting DNA methylation was not responsible for PASMC SOD3 expression. Though total histone deacetylase (HDAC) activity, histone acetyltransferase (HAT) activity, acetylated histones, and acetylated SP1 were similar between IPAH and FD, treatment with two selective class I HDAC inhibitors increased SOD3 only in IPAH PASMC. Class I HDAC3 siRNA also increased SOD3 expression. Trichostatin A, a pan-HDAC inhibitor, decreased proliferation in IPAH, but not in FD PASMC. These data indicate that histone deacetylation, specifically via class I HDAC3, decreases SOD3 expression in PASMC and HDAC inhibitors may protect IPAH in part by increasing PASMC SOD3 expression.


Asunto(s)
Histonas/metabolismo , Hipertensión Pulmonar/enzimología , Procesamiento Proteico-Postraduccional , Superóxido Dismutasa/metabolismo , Acetilación , Adulto , Animales , Células Cultivadas , Represión Enzimática , Femenino , Expresión Génica , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Masculino , Persona de Mediana Edad , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/enzimología , Regiones Promotoras Genéticas , Ratas , Superóxido Dismutasa/genética , Adulto Joven
15.
Ann Rheum Dis ; 75(2): 430-8, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25452308

RESUMEN

OBJECTIVES: Epigenetic modifications play an important role in the regulation of gene transcription and cellular function. Here, we examined if pro-inflammatory factors present in the inflamed joint of patients with rheumatoid arthritis (RA) could regulate histone deacetylase (HDAC) expression and function in fibroblast-like synoviocytes (FLS). METHODS: Protein acetylation in synovial tissue was assessed by immunohistochemistry. The mRNA levels of HDAC family members and inflammatory mediators in the synovial tissue and the changes in HDAC expression in RA FLS were measured by quantitative (q) PCR. FLS were either transfected with HDAC5 siRNA or transduced with adenoviral vector encoding wild-type HDAC5 and the effects of HDAC5 manipulation were examined by qPCR arrays, ELISA and ELISA-based assays. RESULTS: Synovial class I HDAC expression was associated with local expression of tumour necrosis factor (TNF) and matrix metalloproteinase-1, while class IIa HDAC5 expression was inversely associated with parameters of disease activity (erythrocyte sedimentation rate, C-reactive protein, Disease Activity Score in 28 Joints). Interleukin (IL)-1ß or TNF stimulation selectively suppressed HDAC5 expression in RA FLS, which was sufficient and required for optimal IFNB, CXCL9, CXCL10 and CXCL11 induction by IL-1ß, associated with increased nuclear accumulation of the transcription factor, interferon regulatory factor 1(IRF1). CONCLUSIONS: Inflammatory cytokines suppress RA FLS HDAC5 expression, promoting nuclear localisation of IRF1 and transcription of a subset of type I interferon response genes. Our results identify HDAC5 as a novel inflammatory mediator in RA, and suggest that strategies rescuing HDAC5 expression in vivo, or the development of HDAC inhibitors not affecting HDAC5 activity, may have therapeutic applications in RA treatment.


Asunto(s)
Artritis Reumatoide/metabolismo , Citocinas/genética , Fibroblastos/metabolismo , Histona Desacetilasas/metabolismo , Membrana Sinovial/citología , Adulto , Anciano , Artritis Reumatoide/genética , Sedimentación Sanguínea , Proteína C-Reactiva/análisis , Epigénesis Genética , Femenino , Humanos , Factor 1 Regulador del Interferón/genética , Interleucina-1beta/metabolismo , Masculino , Metaloproteinasa 1 de la Matriz/metabolismo , Persona de Mediana Edad , ARN Mensajero/metabolismo , Índice de Severidad de la Enfermedad , Transcripción Genética , Factor de Necrosis Tumoral alfa/metabolismo
16.
Proc Natl Acad Sci U S A ; 110(24): 9806-11, 2013 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-23720316

RESUMEN

Cardiac hypertrophy is a strong predictor of morbidity and mortality in patients with heart failure. Small molecule histone deacetylase (HDAC) inhibitors have been shown to suppress cardiac hypertrophy through mechanisms that remain poorly understood. We report that class I HDACs function as signal-dependent repressors of cardiac hypertrophy via inhibition of the gene encoding dual-specificity phosphatase 5 (DUSP5) DUSP5, a nuclear phosphatase that negatively regulates prohypertrophic signaling by ERK1/2. Inhibition of DUSP5 by class I HDACs requires activity of the ERK kinase, mitogen-activated protein kinase kinase (MEK), revealing a self-reinforcing mechanism for promotion of cardiac ERK signaling. In cardiac myocytes treated with highly selective class I HDAC inhibitors, nuclear ERK1/2 signaling is suppressed in a manner that is absolutely dependent on DUSP5. In contrast, cytosolic ERK1/2 activation is maintained under these same conditions. Ectopic expression of DUSP5 in cardiomyocytes results in potent inhibition of agonist-dependent hypertrophy through a mechanism involving suppression of the gene program for hypertrophic growth. These findings define unique roles for class I HDACs and DUSP5 as integral components of a regulatory signaling circuit that controls cardiac hypertrophy.


Asunto(s)
Cardiomegalia/metabolismo , Fosfatasas de Especificidad Dual/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Histona Desacetilasas/metabolismo , Animales , Animales Recién Nacidos , Benzamidas/farmacología , Cardiomegalia/genética , Núcleo Celular/enzimología , Células Cultivadas , Fosfatasas de Especificidad Dual/genética , Regulación de la Expresión Génica/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Immunoblotting , Masculino , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Pirimidinas/farmacología , Interferencia de ARN , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
17.
J Mol Cell Cardiol ; 83: 14-20, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25791169

RESUMEN

Histone deacetylases (HDACs) catalyze the removal of acetyl-groups from lysine residues within nucelosomal histone tails and thousands of non-histone proteins. The 18 mammalian HDACs are grouped into four classes. Classes I, II and IV HDACs employ zinc as a co-factor for catalytic activity, while class III HDACs (also known as sirtuins) require NAD+ for enzymatic function. Small molecule inhibitors of zinc-dependent HDACs are efficacious in multiple pre-clinical models of pressure overload and ischemic cardiomyopathy, reducing pathological hypertrophy and fibrosis, and improving contractile function. Emerging data have revealed numerous mechanisms by which HDAC inhibitors benefit the heart, including suppression of oxidative stress and inflammation, inhibition of MAP kinase signaling, and enhancement of cardiac protein aggregate clearance and autophagic flux. Here, we summarize recent findings with zinc-dependent HDACs and HDAC inhibitors in the heart, focusing on newly described functions for distinct HDAC isoforms (e.g. HDAC2, HDAC3 and HDAC6). Potential for pharmacological HDAC inhibition as a means of treating age-related cardiac dysfunction is also discussed. This article is part of a Special Issue entitled: CV Aging.


Asunto(s)
Envejecimiento/metabolismo , Cardiomegalia/enzimología , Insuficiencia Cardíaca/enzimología , Histona Desacetilasas/metabolismo , Miocardio/enzimología , Procesamiento Proteico-Postraduccional , Envejecimiento/genética , Animales , Cardiomegalia/genética , Cardiomegalia/patología , Cardiomegalia/prevención & control , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/prevención & control , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/clasificación , Histona Desacetilasas/genética , Histonas/genética , Histonas/metabolismo , Humanos , Inflamación , Isoenzimas/antagonistas & inhibidores , Isoenzimas/clasificación , Isoenzimas/genética , Isoenzimas/metabolismo , Miocardio/patología , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal
18.
J Mol Cell Cardiol ; 67: 112-25, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24374140

RESUMEN

Fibrosis, which is defined as excessive accumulation of fibrous connective tissue, contributes to the pathogenesis of numerous diseases involving diverse organ systems. Cardiac fibrosis predisposes individuals to myocardial ischemia, arrhythmias and sudden death, and is commonly associated with diastolic dysfunction. Histone deacetylase (HDAC) inhibitors block cardiac fibrosis in pre-clinical models of heart failure. However, which HDAC isoforms govern cardiac fibrosis, and the mechanisms by which they do so, remains unclear. Here, we show that selective inhibition of class I HDACs potently suppresses angiotensin II (Ang II)-mediated cardiac fibrosis by targeting two key effector cell populations, cardiac fibroblasts and bone marrow-derived fibrocytes. Class I HDAC inhibition blocks cardiac fibroblast cell cycle progression through derepression of the genes encoding the cyclin-dependent kinase (CDK) inhibitors, p15 and p57. In contrast, class I HDAC inhibitors block agonist-dependent differentiation of fibrocytes through a mechanism involving repression of ERK1/2 signaling. These findings define novel roles for class I HDACs in the control of pathological cardiac fibrosis. Furthermore, since fibrocytes have been implicated in the pathogenesis of a variety of human diseases, including heart, lung and kidney failure, our results suggest broad utility for isoform-selective HDAC inhibitors as anti-fibrotic agents that function, in part, by targeting these circulating mesenchymal cells.


Asunto(s)
Angiotensina II/metabolismo , Fibroblastos/efectos de los fármacos , Fibrosis/fisiopatología , Inhibidores de Histona Desacetilasas/farmacología , Animales , Ciclo Celular/efectos de los fármacos , Diferenciación Celular , Fibroblastos/metabolismo , Fibrosis/tratamiento farmacológico , Citometría de Flujo , Humanos , Immunoblotting , Masculino , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena de la Polimerasa , Isoformas de Proteínas/farmacología
19.
Biochim Biophys Acta ; 1832(1): 11-9, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22952004

RESUMEN

Mounting evidence has established a role for chronic inflammation in the development of obesity-induced insulin resistance, as genetic ablation of pro-inflammatory cytokines and chemokines elevated in obesity improves insulin signaling in vitro and in vivo. Recent evidence further highlights interleukin (IL)-12 family cytokines as prospective inflammatory mediators linking obesity to insulin resistance. In this study, we present empirical evidence demonstrating that IL-12 family related genes are expressed and regulated in insulin-responsive tissues under conditions of obesity. First, we report that respective mRNAs for each of the known members of this cytokine family are expressed within detectable ranges in WAT, skeletal muscle, liver and heart. Second, we show that these cytokines and their cognate receptors are divergently regulated with genetic obesity in a tissue-specific manner. Third, we demonstrate that select IL-12 family cytokines are regulated in WAT in a manner that is dependent on the developmental stage of obesity as well as the inflammatory progression associated with obesity. Fourth, we report that respective mRNAs for IL-12 cytokines and receptors are also expressed and divergently regulated in cultured adipocytes under conditions of inflammatory stress. To our knowledge, this report is the first study to systemically evaluated mRNA expression of all IL-12 family cytokines and receptors in any tissue under conditions of obesity highlighting select family members as potential mediators linking excess nutrient intake to metabolic diseases such as insulin resistance, diabetes and heart disease.


Asunto(s)
Insulina/metabolismo , Interleucina-12/genética , Familia de Multigenes , Obesidad/genética , Obesidad/metabolismo , Estructuras Animales/metabolismo , Animales , Humanos , Interleucina-12/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Miocardio/metabolismo
20.
Am J Physiol Heart Circ Physiol ; 307(2): H252-8, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24858848

RESUMEN

Little is known about the function of the cytoplasmic histone deacetylase HDAC6 in striated muscle. Here, we addressed the role of HDAC6 in cardiac and skeletal muscle remodeling induced by the peptide hormone angiotensin II (ANG II), which plays a central role in blood pressure control, heart failure, and associated skeletal muscle wasting. Comparable with wild-type (WT) mice, HDAC6 null mice developed cardiac hypertrophy and fibrosis in response to ANG II. However, whereas WT mice developed systolic dysfunction upon treatment with ANG II, cardiac function was maintained in HDAC6 null mice treated with ANG II for up to 8 wk. The cardioprotective effect of HDAC6 deletion was mimicked in WT mice treated with the small molecule HDAC6 inhibitor tubastatin A. HDAC6 null mice also exhibited improved left ventricular function in the setting of pressure overload mediated by transverse aortic constriction. HDAC6 inhibition appeared to preserve systolic function, in part, by enhancing cooperativity of myofibrillar force generation. Finally, we show that HDAC6 null mice are resistant to skeletal muscle wasting mediated by chronic ANG-II signaling. These findings define novel roles for HDAC6 in striated muscle and suggest potential for HDAC6-selective inhibitors for the treatment of cardiac dysfunction and muscle wasting in patients with heart failure.


Asunto(s)
Angiotensina II , Cardiomegalia/enzimología , Insuficiencia Cardíaca/enzimología , Histona Desacetilasas/metabolismo , Músculo Esquelético/enzimología , Atrofia Muscular/enzimología , Miocardio/enzimología , Animales , Cardiomegalia/inducido químicamente , Cardiomegalia/patología , Cardiomegalia/fisiopatología , Cardiomegalia/prevención & control , Modelos Animales de Enfermedad , Fibrosis , Insuficiencia Cardíaca/inducido químicamente , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/prevención & control , Histona Desacetilasa 6 , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/deficiencia , Histona Desacetilasas/genética , Ácidos Hidroxámicos/farmacología , Indoles/farmacología , Masculino , Ratones , Ratones Noqueados , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Atrofia Muscular/inducido químicamente , Atrofia Muscular/patología , Atrofia Muscular/prevención & control , Miocardio/patología , Transducción de Señal , Volumen Sistólico , Sístole , Factores de Tiempo , Función Ventricular Izquierda , Remodelación Ventricular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA