Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(17)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36077299

RESUMEN

Pancreatic cancer has a high mortality rate due to its aggressive nature and high metastatic rate. When coupled to the difficulties in detecting this type of tumor early and the lack of effective treatments, this cancer is currently one of the most important clinical challenges in the field of oncology. Melitherapy is an innovative therapeutic approach that is based on modifying the composition and structure of cell membranes to treat different diseases, including cancers. In this context, 2-hydroxycervonic acid (HCA) is a melitherapeutic agent developed to combat pancreatic cancer cells, provoking the programmed cell death by apoptosis of these cells by inducing ER stress and triggering the production of ROS species. The efficacy of HCA was demonstrated in vivo, alone and in combination with gemcitabine, using a MIA PaCa-2 cell xenograft model of pancreatic cancer in which no apparent toxicity was evident. HCA is metabolized by α-oxidation to C21:5n-3 (heneicosapentaenoic acid), which in turn also showed anti-proliferative effect in these cells. Given the unmet clinical needs associated with pancreatic cancer, the data presented here suggest that the use of HCA merits further study as a potential therapy for this condition.


Asunto(s)
Estrés del Retículo Endoplásmico , Neoplasias Pancreáticas , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Ácidos Docosahexaenoicos/uso terapéutico , Humanos , Hidroxiácidos , Imidazoles , Neoplasias Pancreáticas/patología , Sulfonamidas , Tiofenos , Neoplasias Pancreáticas
2.
Front Physiol ; 12: 782525, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35126175

RESUMEN

Cell proliferation in pancreatic cancer is determined by a complex network of signaling pathways. Despite the extensive understanding of these protein-mediated signaling processes, there are no significant drug discoveries that could considerably improve a patient's survival. However, the recent understanding of lipid-mediated signaling gives a new perspective on the control of the physiological state of pancreatic cells. Lipid signaling plays a major role in the induction of cytocidal autophagy and can be exploited using synthetic lipids to induce cell death in pancreatic cancer cells. In this work, we studied the activity of a synthetic lipid, tri-2-hydroxyarachidonein (TGM4), which is a triacylglycerol mimetic that contains three acyl moieties with four double bonds each, on cellular and in vivo models of pancreatic cancer. We demonstrated that TGM4 inhibited proliferation of Mia-PaCa-2 (human pancreatic carcinoma) and PANC-1 (human pancreatic carcinoma of ductal cells) in in vitro models and in an in vivo xenograft model of Mia-PaCa-2 cells. In vitro studies demonstrated that TGM4 induced cell growth inhibition paralleled with an increased expression of PARP and CHOP proteins together with the presence of sub-G0 cell cycle events, indicating cell death. This cytocidal effect was associated with elevated ER stress or autophagy markers such as BIP, LC3B, and DHFR. In addition, TGM4 activated peroxisome proliferator-activated receptor gamma (PPAR-γ), which induced elevated levels of p-AKT and downregulation of p-c-Jun. We conclude that TGM4 induced pancreatic cell death by activation of cytocidal autophagy. This work highlights the importance of lipid signaling in cancer and the use of synthetic lipid structures as novel and potential approaches to treat pancreatic cancer and other neoplasias.

3.
Membranes (Basel) ; 11(12)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34940418

RESUMEN

Membranes are mainly composed of a lipid bilayer and proteins, constituting a checkpoint for the entry and passage of signals and other molecules. Their composition can be modulated by diet, pathophysiological processes, and nutritional/pharmaceutical interventions. In addition to their use as an energy source, lipids have important structural and functional roles, e.g., fatty acyl moieties in phospholipids have distinct impacts on human health depending on their saturation, carbon length, and isometry. These and other membrane lipids have quite specific effects on the lipid bilayer structure, which regulates the interaction with signaling proteins. Alterations to lipids have been associated with important diseases, and, consequently, normalization of these alterations or regulatory interventions that control membrane lipid composition have therapeutic potential. This approach, termed membrane lipid therapy or membrane lipid replacement, has emerged as a novel technology platform for nutraceutical interventions and drug discovery. Several clinical trials and therapeutic products have validated this technology based on the understanding of membrane structure and function. The present review analyzes the molecular basis of this innovative approach, describing how membrane lipid composition and structure affects protein-lipid interactions, cell signaling, disease, and therapy (e.g., fatigue and cardiovascular, neurodegenerative, tumor, infectious diseases).

4.
Cancers (Basel) ; 13(17)2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34503102

RESUMEN

Glioblastoma (GBM) is the most common and aggressive type of primary brain tumor in adults, and the median survival of patients with GBM is 14.5 months. Melitherapy is an innovative therapeutic approach to treat different diseases, including cancer, and it is based on the regulation of cell membrane composition and structure, which modulates relevant signal pathways. Here, we have tested the effects of 2-hydroxycervonic acid (HCA) on GBM cells and xenograft tumors. HCA was taken up by cells and it compromised the survival of several human GBM cell lines in vitro, as well as the in vivo growth of xenograft tumors (mice) derived from these cells. HCA appeared to enhance ER stress/UPR signaling, which consequently induced autophagic cell death of the GBM tumor cells. This negative effect of HCA on GBM cells may be mediated by the JNK/c-Jun/CHOP/BiP axis, and it also seems to be provoked by the cellular metabolite of HCA, C21:5n-3 (heneicosapentaenoic acid). These results demonstrate the efficacy of the melitherapeutic treatment used and the potential of using C21:5n-3 as an efficacy biomarker for this treatment. Given the safety profile in animal models, the data presented here provide evidence that HCA warrants further clinical study as a potential therapy for GBM, currently an important unmet medical need.

5.
Cancers (Basel) ; 11(1)2019 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-30646599

RESUMEN

Background: 2-Hydroxyoleic acid (2OHOA) is particularly active against glioblastoma multiforme (GBM) and successfully finished a phase I/IIA trial in patients with glioma and other advanced solid tumors. However, its mechanism of action is not fully known. Methods: The relationship between SMS1 and SMS2 expressions (mRNA) and overall survival in 329 glioma patients was investigated, and so was the correlation between SMS expression and 2OHOA's efficacy. The opposing role of SMS isoforms in 2OHOA's mechanism of action and in GBM cell growth, differentiation and death, was studied overexpressing or silencing them in human GBM cells. Results: Patients with high-SMS1 plus low-SMS2 expression had a 5-year survival ~10-fold higher than patients with low-SMS1 plus high-SMS2 expression. SMS1 and SMS2 also had opposing effect on GBM cell survival and 2OHOA's IC50 correlated with basal SMS1 levels and treatment induced changes in SMS1/SMS2 ratio. SMSs expression disparately affected 2OHOA's cancer cell proliferation, differentiation, ER-stress and autophagy. Conclusions: SMS1 and SMS2 showed opposite associations with glioma patient survival, glioma cell growth and response to 2OHOA treatment. SMSs signature could constitute a valuable prognostic biomarker, with high SMS1 and low SMS2 being a better disease prognosis. Additionally, low basal SMS1 mRNA levels predict positive response to 2OHOA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA