Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
bioRxiv ; 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36711913

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) affects nearly one third of the population worldwide. Understanding metabolic pathways involved can provide insights into disease progression. Untargeted metabolomics of livers from mice with early-stage steatosis indicated a decrease in methylated metabolites suggesting altered one carbon metabolism. The levels of glycine, a central component of one carbon metabolism, were lower in steatotic mice, in line with clinical evidence. Isotope tracing studies demonstrated that increased synthesis of serine from glycine is the underlying cause for glycine limitation in fatty livers. Consequently, the low glycine availability in steatotic livers impaired glutathione (GSH) synthesis under oxidative stress induced by acetaminophen (APAP), enhancing hepatic toxicity. Glycine supplementation mitigated acute liver damage and overall toxicity caused by APAP in fatty livers by supporting de novo GSH synthesis. Thus, early metabolic changes in NAFLD that lead to glycine depletion sensitize mice to xenobiotic toxicity even at a reversible stage of NAFLD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA