Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Hum Mol Genet ; 27(5): 912-928, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29325110

RESUMEN

Despite advancements in genetic studies, it is difficult to understand and characterize the functional relevance of disease-associated genetic variants, especially in the context of a complex multifactorial disease such as multiple sclerosis (MS). As a large proportion of expression quantitative trait loci (eQTLs) are context-specific, we performed RNA-Seq in peripheral blood mononuclear cells from MS patients (n = 145) to identify eQTLs in regions centered on 109 MS risk single nucleotide polymorphisms and 7 associated human leukocyte antigen variants. We identified 77 statistically significant eQTL associations, including pseudogenes and non-coding RNAs. Thirty-eight out of 40 testable eQTL effects were colocalized with the disease association signal. As many eQTLs are tissue specific, we aimed to detail their significance in different cell types. Approximately 70% of the eQTLs were replicated and characterized in at least one major peripheral blood mononuclear cell-derived cell type. Furthermore, 40% of eQTLs were found to be more pronounced in MS patients compared with non-inflammatory neurological diseases patients. In addition, we found two single nucleotide polymorphisms to be significantly associated with the proportions of three different cell types. Mapping to enhancer histone marks and predicted transcription factor binding sites added additional functional evidence for eight eQTL regions. As an example, we found that rs71624119, shared with three other autoimmune diseases and located in a primed enhancer (H3K4me1) with potential binding for STAT transcription factors, significantly associates with ANKRD55 expression. This study provides many novel and validated targets for future functional characterization of MS and other diseases.


Asunto(s)
Esclerosis Múltiple/genética , Sitios de Carácter Cuantitativo , Estudios de Cohortes , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Antígenos HLA/genética , Humanos , Interferón gamma/farmacología , Leucocitos Mononucleares/fisiología , Desequilibrio de Ligamiento , Lipopolisacáridos/farmacología , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Polimorfismo de Nucleótido Simple , Reproducibilidad de los Resultados
2.
BMC Biol ; 16(1): 47, 2018 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-29730990

RESUMEN

BACKGROUND: Regulatory T cells (Tregs) expressing the transcription factor FOXP3 are crucial mediators of self-tolerance, preventing autoimmune diseases but possibly hampering tumor rejection. Clinical manipulation of Tregs is of great interest, and first-in-man trials of Treg transfer have achieved promising outcomes. Yet, the mechanisms governing induced Treg (iTreg) differentiation and the regulation of FOXP3 are incompletely understood. RESULTS: To gain a comprehensive and unbiased molecular understanding of FOXP3 induction, we performed time-series RNA sequencing (RNA-Seq) and proteomics profiling on the same samples during human iTreg differentiation. To enable the broad analysis of universal FOXP3-inducing pathways, we used five differentiation protocols in parallel. Integrative analysis of the transcriptome and proteome confirmed involvement of specific molecular processes, as well as overlap of a novel iTreg subnetwork with known Treg regulators and autoimmunity-associated genes. Importantly, we propose 37 novel molecules putatively involved in iTreg differentiation. Their relevance was validated by a targeted shRNA screen confirming a functional role in FOXP3 induction, discriminant analyses classifying iTregs accordingly, and comparable expression in an independent novel iTreg RNA-Seq dataset. CONCLUSION: The data generated by this novel approach facilitates understanding of the molecular mechanisms underlying iTreg generation as well as of the concomitant changes in the transcriptome and proteome. Our results provide a reference map exploitable for future discovery of markers and drug candidates governing control of Tregs, which has important implications for the treatment of cancer, autoimmune, and inflammatory diseases.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Proteoma/metabolismo , Linfocitos T Reguladores/metabolismo , Transcriptoma/fisiología , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Línea Celular , Factores de Transcripción Forkhead/genética , Regulación de la Expresión Génica , Humanos , Análisis de Secuencia de ARN , Transducción de Señal , Transcriptoma/genética , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
3.
Mult Scler ; 24(10): 1288-1300, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-28766461

RESUMEN

BACKGROUND: Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system caused by genetic and environmental factors. DNA methylation, an epigenetic mechanism that controls genome activity, may provide a link between genetic and environmental risk factors. OBJECTIVE: We sought to identify DNA methylation changes in CD4+ T cells in patients with relapsing-remitting (RR-MS) and secondary-progressive (SP-MS) disease and healthy controls (HC). METHODS: We performed DNA methylation analysis in CD4+ T cells from RR-MS, SP-MS, and HC and associated identified changes with the nearby risk allele, smoking, age, and gene expression. RESULTS: We observed significant methylation differences in the VMP1/MIR21 locus, with RR-MS displaying higher methylation compared to SP-MS and HC. VMP1/MIR21 methylation did not correlate with a known MS risk variant in VMP1 or smoking but displayed a significant negative correlation with age and the levels of mature miR-21 in CD4+ T cells. Accordingly, RR-MS displayed lower levels of miR-21 compared to SP-MS, which might reflect differences in age between the groups, and healthy individuals and a significant enrichment of up-regulated miR-21 target genes. CONCLUSION: Disease-related changes in epigenetic marking of MIR21 in RR-MS lead to differences in miR-21 expression with a consequence on miR-21 target genes.


Asunto(s)
Linfocitos T CD4-Positivos/fisiología , Regulación de la Expresión Génica/fisiología , MicroARNs/genética , Esclerosis Múltiple Crónica Progresiva/genética , Esclerosis Múltiple Recurrente-Remitente/genética , Adulto , Metilación de ADN , Femenino , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple Crónica Progresiva/inmunología , Esclerosis Múltiple Recurrente-Remitente/inmunología , Regulación hacia Arriba
4.
BMC Genomics ; 13: 663, 2012 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-23176672

RESUMEN

BACKGROUND: Phyto-remedies for diabetic control are popular among patients with Type II Diabetes mellitus (DM), in addition to other diabetic control measures. A number of plant species are known to possess diabetic control properties. Costus pictus D. Don is popularly known as "Insulin Plant" in Southern India whose leaves have been reported to increase insulin pools in blood plasma. Next Generation Sequencing is employed as a powerful tool for identifying molecular signatures in the transcriptome related to physiological functions of plant tissues. We sequenced the leaf transcriptome of C. pictus using Illumina reversible dye terminator sequencing technology and used combination of bioinformatics tools for identifying transcripts related to anti-diabetic properties of C. pictus. RESULTS: A total of 55,006 transcripts were identified, of which 69.15% transcripts could be annotated. We identified transcripts related to pathways of bixin biosynthesis and geraniol and geranial biosynthesis as major transcripts from the class of isoprenoid secondary metabolites and validated the presence of putative norbixin methyltransferase, a precursor of Bixin. The transcripts encoding these terpenoids are known to be Peroxisome Proliferator-Activated Receptor (PPAR) agonists and anti-glycation agents. Sequential extraction and High Performance Liquid Chromatography (HPLC) confirmed the presence of bixin in C. pictus methanolic extracts. Another significant transcript identified in relation to anti-diabetic, anti-obesity and immuno-modulation is of Abscisic Acid biosynthetic pathway. We also report many other transcripts for the biosynthesis of antitumor, anti-oxidant and antimicrobial metabolites of C. pictus leaves. CONCLUSION: Solid molecular signatures (transcripts related to bixin, abscisic acid, and geranial and geraniol biosynthesis) for the anti-diabetic properties of C. pictus leaves and vital clues related to the other phytochemical functions like antitumor, anti-oxidant, immuno-modulatory, anti-microbial and anti-malarial properties through the secondary metabolite pathway annotations are reported. The data provided will be of immense help to researchers working in the treatment of DM using herbal therapies.


Asunto(s)
Costus/genética , Genes de Plantas , Hipoglucemiantes/metabolismo , Hojas de la Planta/genética , Transcriptoma , Ácido Abscísico/metabolismo , Monoterpenos Acíclicos , Secuencia de Bases , Carotenoides/metabolismo , Cromatografía Líquida de Alta Presión , Biología Computacional , Costus/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Metiltransferasas/metabolismo , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Monoterpenos/metabolismo , Fitoterapia , Extractos Vegetales/química , Hojas de la Planta/metabolismo , Análisis de Secuencia de ADN , Terpenos/metabolismo
5.
Epigenomics ; 13(20): 1607-1618, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34676774

RESUMEN

Background: The putative involvement of chromatin states in multiple sclerosis (MS) is thus far unclear. Here we determined the association of chromatin-accessibility with concurrent genetic, epigenetic and transcriptional events. Material & methods: We generated paired assay for transposase-accessible chromatin sequencing and RNA-sequencing profiles from sorted blood immune CD4+ and CD8+ T cells, CD14+ monocytes and CD19+ B cells from healthy controls (HCs) and MS patients. Results: We identified differentially accessible regions between MS patients and HCs, primarily in CD4+ and CD19+. CD4+ regions were enriched for MS-associated single nucleotide polymorphisms and differentially methylated loci. In the vicinity of differentially accessible regions of CD4+ cells, 42 differentially expressed genes were identified. The top two dysregulated genes identified in this multilayer analysis were CCDC114 and SERTAD1. Conclusion: These findings provide new insight into the primary role of CD4+ and CD19+ cells in MS.


Lay abstract Multiple sclerosis (MS) is a devastating disease that affects individuals at a young age and gradually worsens over their lifespan. Currently, treatment for MS is broad, meaning it treats the symptoms but not the cause of the disease. Treating symptoms means that patients may feel better, but their general quality of life is not normal. In addition, treating symptoms can lead to the underlying cause still being present, which can come back once treatment is stopped. What we are striving to do in this article is to better understand the cause. If we can do that, we can have targeted treatment that will get rid of the disease without the fear of it coming back and drastically improve quality of life and life span. Here, we have identified the complex nature of MS and made an effort to identify certain genes that are different in MS patients and present a way to better understand MS using advanced genome study methodologies.


Asunto(s)
Cromatina/genética , Susceptibilidad a Enfermedades , Sistema Inmunológico/inmunología , Esclerosis Múltiple/etiología , Transcriptoma , Alelos , Biomarcadores , Cromatina/metabolismo , Islas de CpG , Metilación de ADN , Predisposición Genética a la Enfermedad , Humanos , Sistema Inmunológico/metabolismo , Linfocitos/inmunología , Linfocitos/metabolismo , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Especificidad de Órganos
6.
J Leukoc Biol ; 106(2): 413-430, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30882958

RESUMEN

Regulatory T cells (Tregs) act as indispensable unit for maintaining peripheral immune tolerance mainly by regulating effector T cells. T cells resistant to suppression by Tregs pose therapeutic challenges in the treatment of autoimmune diseases, while augmenting susceptibility to suppression may be desirable for cancer therapy. To understand the cell intrinsic signals in T cells during suppression by Tregs, we have previously performed a global phosphoproteomic characterization. We revealed altered phosphorylation of protein phosphatase 1 regulatory subunit 11 (PPP1R11; Inhibitor-3) in conventional T cells upon suppression by Tregs. Here, we show that silencing of PPP1R11 renders T cells resistant toward Treg-mediated suppression of TCR-induced cytokine expression. Furthermore, whole-transcriptome sequencing revealed that PPP1R11 differentially regulates not only the expression of specific T cell stimulation-induced cytokines but also other molecules and pathways in T cells. We further confirmed the target of PPP1R11, PP1, to augment TCR-induced cytokine expression. In conclusion, we present PPP1R11 as a novel negative regulator of T cell activation-induced cytokine expression. Targeting PPP1R11 may have therapeutic potential to regulate the T cell activation status including modulating the susceptibility of T cells toward Treg-mediated suppression, specifically altering the stimulation-induced T cell cytokine milieu.


Asunto(s)
Citocinas/genética , Monoéster Fosfórico Hidrolasas/antagonistas & inhibidores , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Proliferación Celular , Células Cultivadas , Técnicas de Cocultivo , Citocinas/metabolismo , Expresión Génica , Silenciador del Gen , Humanos , Inmunomodulación , Mediadores de Inflamación , Monoéster Fosfórico Hidrolasas/metabolismo , Fosforilación , ARN Interferente Pequeño/genética
7.
Sci Rep ; 9(1): 11996, 2019 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-31427643

RESUMEN

Multiple Sclerosis (MS) is an autoimmune disease of the central nervous system with prominent neurodegenerative components. The triggering and progression of MS is associated with transcriptional and epigenetic alterations in several tissues, including peripheral blood. The combined influence of transcriptional and epigenetic changes associated with MS has not been assessed in the same individuals. Here we generated paired transcriptomic (RNA-seq) and DNA methylation (Illumina 450 K array) profiles of CD4+ and CD8+ T cells (CD4, CD8), using clinically accessible blood from healthy donors and MS patients in the initial relapsing-remitting and subsequent secondary-progressive stage. By integrating the output of a differential expression test with a permutation-based non-parametric combination methodology, we identified 149 differentially expressed (DE) genes in both CD4 and CD8 cells collected from MS patients. Moreover, by leveraging the methylation-dependent regulation of gene expression, we identified the gene SH3YL1, which displayed significant correlated expression and methylation changes in MS patients. Importantly, silencing of SH3YL1 in primary human CD4 cells demonstrated its influence on T cell activation. Collectively, our strategy based on paired sampling of several cell-types provides a novel approach to increase sensitivity for identifying shared mechanisms altered in CD4 and CD8 cells of relevance in MS in small sized clinical materials.


Asunto(s)
Inmunomodulación , Esclerosis Múltiple/etiología , Esclerosis Múltiple/metabolismo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Adulto , Biología Computacional/métodos , Metilación de ADN , Manejo de la Enfermedad , Progresión de la Enfermedad , Susceptibilidad a Enfermedades , Femenino , Perfilación de la Expresión Génica , Humanos , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/diagnóstico , Índice de Severidad de la Enfermedad , Transcriptoma
8.
J Virol Methods ; 236: 98-104, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27448822

RESUMEN

Analysing the HIV-1 near full-length genome (HIV-NFLG) facilitates new understanding into the diversity of virus population dynamics at individual or population level. In this study we developed a simple but high-throughput next generation sequencing (NGS) protocol for HIV-NFLG using clinical specimens and validated the method against an external quality control (EQC) panel. Clinical specimens (n=105) were obtained from three cohorts from two highly conserved HIV-1C epidemics (India and Ethiopia) and one diverse epidemic (Sweden). Additionally an EQC panel (n=10) was used to validate the protocol. HIV-NFLG was performed amplifying the HIV-genome (Gag-to-nef) in two fragments. NGS was performed using the Illumina HiSeq2500 after multiplexing 24 samples, followed by de novo assembly in Iterative Virus Assembler or VICUNA. Subtyping was carried out using several bioinformatics tools. Amplification of HIV-NFLG has 90% (95/105) success-rate in clinical specimens. NGS was successful in all clinical specimens (n=45) and EQA samples (n=10) attempted. The mean error for mutations for the EQC panel viruses were <1%. Subtyping identified two as A1C recombinant. Our results demonstrate the feasibility of a simple NGS-based HIV-NFLG that can potentially be used in the molecular surveillance for effective identification of subtypes and transmission clusters for operational public health intervention.


Asunto(s)
Genotipo , Infecciones por VIH/virología , VIH-1/clasificación , VIH-1/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Plasma/virología , Análisis de Secuencia de ADN/métodos , Etiopía , Genoma Humano , Genoma Viral , VIH-1/aislamiento & purificación , Humanos , India , ARN Viral/genética , Suecia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA