Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Int J Mol Sci ; 24(18)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37762080

RESUMEN

Chagas disease is a neglected tropical disease caused by the protozoan Trypanosoma cruzi. Benznidazole and nifurtimox are the two approved drugs for their treatment, but both drugs present side effects and efficacy problems, especially in the chronic phase of this disease. Therefore, new molecules have been tested with promising results aiming for strategic targeting action against T. cruzi. Several studies involve in vitro screening, but a considerable number of in vivo studies describe drug bioavailability increment, drug stability, toxicity assessment, and mainly the efficacy of new drugs and formulations. In this context, new drug delivery systems, such as nanotechnology systems, have been developed for these purposes. Some nanocarriers are able to interact with the immune system of the vertebrate host, modulating the immune response to the elimination of pathogenic microorganisms. In this overview of nanotechnology-based delivery strategies for established and new antichagasic agents, different strategies, and limitations of a wide class of nanocarriers are explored, as new perspectives in the treatment and monitoring of Chagas disease.

2.
Pharmacol Res ; 181: 106245, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35526666

RESUMEN

Multidrug-resistant bacterial infections are a threat to public health worldwide, which boosts the urgent need for pharmacological research for new drugs. Although the peptides without disulfide bridges from scorpions have shown antimicrobial action, usually their toxicity hamper their pharmacological application. Stigmurin is a non-hemolytic cationic peptide from Tityus stigmurus venom with antibacterial effect and toxicity on normal cells. In this approach, the conformational changes and stability of two Stigmurin analog peptides, named StigA8 and StigA18, were evaluated by circular dichroism, as well as the mechanism of interaction with bacterial membranes in silico. In addition, the in vitro and in vivo antibacterial activity and the action against the biofilm formed by multidrug-resistant Staphylococcus aureus were investigated. StigA8 (+4) and StigA18 (+5) revealed the ability to change their structural conformation depending on the medium composition, and high stability at different temperatures and pH conditions. Both analog peptides showed greater ability to interact with bacterial membranes in silico when compared to the native one. StigA8 and StigA18 demonstrated low hemolytic action, with non-toxic effect on G. mellonella larvae up to 120 mg/kg. StigA8 and StigA18 presented a broad spectrum of antibacterial action in vitro, especially against multidrug-resistant clinical isolates. The analog peptides (7.5 µM) also reduced the biofilm biomass of multidrug-resistant S. aureus, as well as increased the larval survival of the Galleria mellonella infected larvae. Therefore, StigA8 and StigA18 showed a beneficial potential in the treatment of bacterial infections, constituting promising bioactive components for the development of new antimicrobial agents.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Venenos de Escorpión , Animales , Antibacterianos/farmacología , Bacterias , Biopelículas , Pruebas de Sensibilidad Microbiana , Péptidos/química , Péptidos/farmacología , Venenos de Escorpión/química , Venenos de Escorpión/farmacología , Escorpiones/química
3.
Prep Biochem Biotechnol ; 52(4): 443-451, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34370621

RESUMEN

Chitooligosaccharides (COS) have a great potential to be used by pharmaceutical industry due to their many biological activities. The use of enzymes to produce them is very advantageous, however it still faces many challenges, such as discovering new strains capable to produce enzymes that are able to generate bioactive oligosaccharides. In the present study a purification protein protocol was performed to purify chitosanases produced by Bacillus toyonensis CCT 7899 for further chitosan hydrolysis. The produced chitooligosaccharides were characterized by mass spectroscopy (MS) and their antiedematogenic effect was investigated through carrageenan-induced paw edema model. The animals were treated previously to inflammation by intragastric route with COS at 30, 300 and 600 mg/kg. The purification protocol showed a good performance for the chitosanases purification using 0.20 M NaCl solution to elute it, with a 9.54-fold purification factor. The treatment with COS promoted a decrease of paw edema at all evaluated times and the AUC0-4h, proving that COS produced showed activity in acute inflammation like commercial anti-inflammatory Dexamethasone (corticosteroid). Therefore, the strategy used to purification was successfully applied and it was possible to generate bioactive oligosaccharides with potential pharmacological use.


Asunto(s)
Bacillus , Quitosano , Animales , Bacillus/metabolismo , Quitina/metabolismo , Quitosano/química , Edema/inducido químicamente , Edema/tratamiento farmacológico , Glicósido Hidrolasas/metabolismo , Inflamación , Oligosacáridos/metabolismo
4.
Mar Drugs ; 19(2)2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33673266

RESUMEN

The global rise of infectious disease outbreaks and the progression of microbial resistance reinforce the importance of researching new biomolecules. Obtained from the hydrolysis of chitosan, chitooligosaccharides (COSs) have demonstrated several biological properties, including antimicrobial, and greater advantage over chitosan due to their higher solubility and lower viscosity. Despite the evidence of the biotechnological potential of COSs, their effects on trypanosomatids are still scarce. The objectives of this study were the enzymatic production, characterization, and in vitro evaluation of the cytotoxic, antibacterial, antifungal, and antiparasitic effects of COSs. NMR and mass spectrometry analyses indicated the presence of a mixture with 81% deacetylated COS and acetylated hexamers. COSs demonstrated no evidence of cytotoxicity upon 2 mg/mL. In addition, COSs showed interesting activity against bacteria and yeasts and a time-dependent parasitic inhibition. Scanning electron microscopy images indicated a parasite aggregation ability of COSs. Thus, the broad biological effect of COSs makes them a promising molecule for the biomedical industry.


Asunto(s)
Antiinfecciosos/farmacología , Antiparasitarios/farmacología , Quitina/análogos & derivados , Antiinfecciosos/química , Antineoplásicos/química , Antineoplásicos/farmacología , Antiparasitarios/química , Quitina/química , Quitina/farmacocinética , Quitosano , Microscopía Electrónica de Rastreo , Oligosacáridos , Factores de Tiempo
5.
Int J Mol Sci ; 19(2)2018 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-29495249

RESUMEN

Tabernaemontana catharinensis (Apocynaceae) has been popularly used by folk medicine because of its anti-inflammatory, analgesic, and antiophidic properties. This study aims to analyze the flavonoids composition of the hydroethanolic extract and of the ethyl acetate (EtOAc) and butanol (BuOH) fractions of T. catharinensis leaves, as well as to evaluate their anti-inflammatory activity using in vivo models. The phytochemical profile, determined by High-Performance Liquid Chromatography-High-Resolution Electrospray Ionization-Mass Spectrometry (HPLC-HRESI-MS), showed the presence of flavonoids mainly having an isorhamnetin nucleus. The anti-inflammatory activity was evaluated in carrageenan-induced paw edema (pre- and post-treatment) with oral administration of a T. catharinensis hydroethanolic extract (50, 100, and 150 mg/kg) and of organic fractions (50 mg/kg). The extract and fractions showed antiedematogenic activity by decreasing myeloperoxidase (MPO) production. In the zymosan-air-pouch model, the extract and fractions inhibited leukocyte migration and significantly decreased the levels of various proteins, such as MPO, interleukin (IL)-1ß, and tumor necrosis factor (TNF)-α. The cytotoxicity was evaluated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, which revealed no cytotoxicity of the extract and the fractions. These results suggest that the hydroethanolic extract and organic fractions of T. catharinensis leaves have sufficient anti-inflammatory activity to support the popular use of this plant in the treatment of inflammatory disorders.


Asunto(s)
Antiinflamatorios/química , Antiinflamatorios/farmacología , Fitoquímicos/análisis , Fitoquímicos/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Tabernaemontana/química , Animales , Supervivencia Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Citocinas/metabolismo , Modelos Animales de Enfermedad , Edema/tratamiento farmacológico , Edema/etiología , Edema/patología , Flavonoides/análisis , Flavonoides/química , Ratones , Peroxidasa/metabolismo , Hojas de la Planta/química , Células RAW 264.7 , Espectrometría de Masa por Ionización de Electrospray
6.
Int J Mol Sci ; 18(11)2017 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-29137120

RESUMEN

Scorpions of the genus Tityus are responsible for the majority of envenomation in Brazil, the Tityus serrulatus species being the most common and dangerous in South America. In this approach, we have investigated the ability of the aqueous extract from the leaves of Aspidosperma pyrifolium in reducing carrageenan-induced inflammation and the inflammation induced by T. serrulatus envenomation in mice. We also evaluated the cytotoxic effects of this extract, using the 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl-2H-tetrazolium (MTT) assay and the results revealed that the extract is safe. Analysis by High Performance Liquid Chromatography coupled with Diode Array Detector (HPLC-DAD) and Liquid Chromatography Coupled with Mass Spectrometry with Diode Array Detection (LC-DAD-MS) showed one major chemical component, the flavonoid rutin and phenolics compounds. For in vivo studies in carrageenan-induced peritonitis model, mice received extracts, dexamethasone, rutin or saline, before administration of carrageenan. For venom-induced inflammation model, animals received T. serrulatus venom and were, simultaneously, treated with extracts, antivenom, rutin or saline. The extract and rutin showed a reduction in the cell migration into the peritoneal cavity, and in the same way the envenomated animals also showed reduction of edema, inflammatory cell infiltration and vasodilation in lungs. This is an original study revealing the potential action of A. pyrifolium against inflammation caused by Tityus serrulatus venom and carrageenan, revealing that this extract and its bioactive molecules, specifically rutin, may present potential anti-inflammatory application.


Asunto(s)
Antiinflamatorios/uso terapéutico , Aspidosperma/química , Peritonitis/inducido químicamente , Peritonitis/tratamiento farmacológico , Células 3T3 , Animales , Antiinflamatorios/farmacología , Carragenina , Supervivencia Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Modelos Animales de Enfermedad , Inflamación/complicaciones , Inflamación/tratamiento farmacológico , Inflamación/patología , Cinética , Pulmón/efectos de los fármacos , Pulmón/patología , Espectrometría de Masas , Ratones , Ratones Endogámicos BALB C , Peritonitis/complicaciones , Peritonitis/patología , Extractos Vegetales/farmacología , Hojas de la Planta/química , Rutina/farmacología , Venenos de Escorpión , Factores de Tiempo
7.
Int J Mol Sci ; 18(11)2017 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-29156553

RESUMEN

Complexation with cyclodextrins (CDs) is a technique that has been extensively used to increase the aqueous solubility of oils and improve their stability. In addition, this technique has been used to convert oils into solid materials. This work aims to develop inclusion complexes of Copaifera multijuga oleoresin (CMO), which presents anti-inflammatory activity, with ß-cyclodextrin (ß-CD) and hydroxypropyl-ß-cyclodextrin (HP-ß-CD) by kneading (KND) and slurry (SL) methods. Physicochemical characterization was performed to verify the occurrence of interactions between CMO and the cyclodextrins. Carrageenan-induced hind paw edema in mice was carried out to evaluate the anti-inflammatory activity of CMO alone as well as complexed with CDs. Physicochemical characterization confirmed the formation of inclusion complex of CMO with both ß-CD and HP-ß-CD by KND and SL methods. Carrageenan-induced paw edema test showed that the anti-inflammatory activity of CMO was maintained after complexation with ß-CD and HP-ß-CD, where they were able to decrease the levels of nitrite and myeloperoxidase. In conclusion, this study showed that it is possible to produce inclusion complexes of CMO with CDs by KND and SL methods without any change in CMO's anti-inflammatory activity.


Asunto(s)
Antiinflamatorios/administración & dosificación , Ciclodextrinas/química , Fabaceae/química , Inflamación/tratamiento farmacológico , Extractos Vegetales/administración & dosificación , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacología , Carragenina/efectos adversos , Cristalografía por Rayos X , Composición de Medicamentos , Regulación de la Expresión Génica/efectos de los fármacos , Inflamación/inducido químicamente , Inflamación/metabolismo , Ratones , Nitritos/metabolismo , Peroxidasa/metabolismo , Extractos Vegetales/química , Extractos Vegetales/farmacología , Solubilidad
8.
BMC Complement Altern Med ; 16: 275, 2016 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-27496015

RESUMEN

BACKGROUND: Hancornia speciosa Gomes (Apocynaceae), popularly known as "mangabeira," has been used in folk medicine to treat inflammatory disorders, hypertension, dermatitis, diabetes, liver diseases and gastric disorders. Although the ethnobotany indicates that its fruits can be used for the treatment of ulcers and inflammatory disorders, only few studies have been conducted to prove such biological activities. This study investigated the anti-inflammatory properties of the aqueous extract of the fruits of H. speciosa Gomes as well as its bioactive compounds using in vivo experimental models. METHODS: The bioactive compounds were identified by High Performance Liquid Chromatography coupled with diode array detector (HPLC-DAD) and Liquid Chromatography coupled with Mass Spectrometry (LC-MS). The anti-inflammatory properties were investigated through in vivo tests, which comprised xylene-induced ear edema, carrageenan-induced peritonitis and zymosan-induced air pouch. The levels of IL-1ß, IL-6, IL-12 and TNF-α were determined using ELISA. RESULTS: Rutin and chlorogenic acid were identified in the extract as the main secondary metabolites. In addition, the extract as well as rutin and chlorogenic acid significantly inhibited the xilol-induced ear edema and also reduced the cell migration in both carrageenan-induced peritonitis and zymosan-induced air pouch models. Reduced levels of cytokines were also observed. CONCLUSION: This is the first study that demonstrated the anti-inflammatory activity of the extract of H. speciosa fruits against different inflammatory agents in animal models, suggesting that its bioactive molecules, especially rutin and chlorogenic acid are, at least in part, responsible for such activity. These findings support the widespread use of Hancornia speciosa in popular medicine and demonstrate that its aqueous extract has therapeutical potential for the development of herbal drugs with anti-inflammatory properties.


Asunto(s)
Antiinflamatorios/farmacología , Apocynaceae/química , Ácido Clorogénico/farmacología , Frutas/química , Extractos Vegetales/farmacología , Rutina/farmacología , Animales , Antiinflamatorios/química , Ácido Clorogénico/química , Edema , Femenino , Inflamación/metabolismo , Interleucinas/análisis , Masculino , Ratones , Ratones Endogámicos BALB C , Peritonitis , Extractos Vegetales/química , Rutina/química
9.
BMC Complement Altern Med ; 14: 405, 2014 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-25328027

RESUMEN

BACKGROUND: Jatropha gossypiifolia L. (Euphorbiaceae) is a medicinal plant largely used in folk medicine. Teas from the leaves are popularly used as an antithrombotic agent and the branches are frequently employed as a "thick blood" agent. Considering that the anticoagulant activity associated with antioxidant properties could be beneficial for various cardiovascular diseases, this study's aim is the evaluation of anticoagulant and antioxidant activities of J. gossypiifolia leaves, seeking new therapeutic purposes for this plant. METHODS: The aqueous leaf crude extract (CE) was prepared by decoction and was fractionated by liquid-liquid partition with solvents of increasing polarity. The phytochemical analysis was performed by thin layer chromatography (TLC) and by the spectrophotometric quantification of sugars, proteins and phenolic compounds. The anticoagulant activity was evaluated by prothrombin time (PT) and activated partial thromboplastin time (aPTT) tests. The capacity to act in the fibrinolytic system (fibrinolytic and fibrinogenolytic activities) was also assessed. The antioxidant activity was evaluated by total antioxidant capacity, reducing power, copper chelating activity, iron chelating activity, hydroxyl radical scavenging activity and superoxide radical scavenging assays. The potential toxicity was evaluated using hemolytic assay and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) assay on HEK-293 cells. RESULTS: CE showed significant anticoagulant activity in aPTT test, while no action was observed in PT test, suggesting a preferential action toward the intrinsic and/or common pathway of coagulation. No effect was observed in the fibrinolytic system. Using the aPTT test, it was observed that the residual aqueous (RA) fraction was the most active, being two times more active than CE. RA presented very significant antioxidant activity in all models tested comparable to or even higher than CE. Regarding the safety, CE and RA did not produce significant cytotoxicity in both tests employed. Phytochemical analysis revealed the presence of alkaloids, flavonoids, proteins, tannins, steroids and/or terpenoids and sugars. CONCLUSIONS: CE and RA possessed significant anticoagulant and antioxidant activity and absence of cytotoxic effect in vitro, thus showing the potential of the plant, especially RA fraction, as a new source of bioactive molecules for therapeutic purposes, with particular emphasis on the treatment of cardiovascular diseases.


Asunto(s)
Anticoagulantes/farmacología , Antioxidantes/farmacología , Jatropha/química , Extractos Vegetales/farmacología , Hojas de la Planta/química , Anticoagulantes/química , Antioxidantes/química , Eritrocitos/efectos de los fármacos , Flavonoides/química , Flavonoides/farmacología , Células HEK293 , Humanos , Medicina Tradicional , Extractos Vegetales/química , Plantas Medicinales/química , Tiempo de Protrombina
10.
Heliyon ; 10(2): e24190, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38293345

RESUMEN

Scorpion sting accidents are a public health problem in the state of Rio Grande do Norte, Brazil. The increasing and high incidence of cases in urban areas reveals the importance of studies to determine the epidemiological profile and the spatial distribution of these accidents. This is a retrospective study that describes and analyzes the cases of scorpion stings in the city of Natal, Rio Grande do Norte, Northeast Brazil, from 2007 to 2018. Data from the Information System database of Notifiable Diseases (SINAN) were obtained from the Secretary of Health of Rio Grande do Norte. 31,368 accidents due to scorpion stings were reported, more frequently in urban areas of Natal, whose Human Development Index is low. The cases occurred predominantly in hot and humid regions, mainly affecting women aged between 30 and 60 years. Most individuals sought medical attention within 3 h of the incident. The severity and mortality of the injured individuals varied according to the area of occurrence, age of the patient, and the local and systemic symptoms presented. Pain, numbness, and edema were the most frequent local symptoms, and systemic symptoms were frequently described as headache, hyperthermia and sweating. Therefore, scorpionism in the city of Natal is an environmental and public health problem, with a significant growth trend (p < 0.05). Through the data collected on the spatial distribution and risks, this approach allows the creation of effective control strategies to prevent accidents.

11.
Toxins (Basel) ; 16(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38922152

RESUMEN

Studies on the interaction sites of peptide toxins and ion channels typically involve site-directed mutations in toxins. However, natural mutant toxins exist among them, offering insights into how the evolutionary process has conserved crucial sequences for activities and molecular target selection. In this study, we present a comparative investigation using electrophysiological approaches and computational analysis between two alpha toxins from evolutionarily close scorpion species of the genus Tityus, namely, Tst3 and Ts3 from T. stigmurus and T. serrulatus, respectively. These toxins exhibit three natural substitutions near the C-terminal region, which is directly involved in the interaction between alpha toxins and Nav channels. Additionally, we characterized the activity of the Tst3 toxin on Nav1.1-Nav1.7 channels. The three natural changes between the toxins did not alter sensitivity to Nav1.4, maintaining similar intensities regarding their ability to alter opening probabilities, delay fast inactivation, and induce persistent currents. Computational analysis demonstrated a preference for the down conformation of VSD4 and a shift in the conformational equilibrium towards this state. This illustrates that the sequence of these toxins retained the necessary information, even with alterations in the interaction site region. Through electrophysiological and computational analyses, screening of the Tst3 toxin on sodium isoform revealed its classification as a classic α-NaTx with a broad spectrum of activity. It effectively delays fast inactivation across all tested isoforms. Structural analysis of molecular energetics at the interface of the VSD4-Tst3 complex further confirmed this effect.


Asunto(s)
Venenos de Escorpión , Escorpiones , Venenos de Escorpión/química , Venenos de Escorpión/genética , Animales , Brasil , Humanos , Xenopus laevis , Activación del Canal Iónico/efectos de los fármacos , Secuencia de Aminoácidos , Animales Ponzoñosos
12.
J Ethnopharmacol ; 330: 118188, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38608797

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The species Jatropha gossypiifolia, popularly known as "pinhão-roxo", is distributed throughout Brazil, is commonly employed for topical or oral administration in treating wounds, inflammations, and snake bites. Given the significant impact of snakebites on public health and the limitations of antivenom, coupled with the diverse molecular composition of this plant species, investigating its healing and antidermonecrotic capacities is relevant. AIM OF THE STUDY: This study aimed to develop a topical nanoemulsion incorporating the hydroethanolic extract of J. gossypiifolia leaves, to evaluate its therapeutic potential, particularly in terms of its efficacy in wound healing and inhibition of dermonecrosis induced by B. erythromelas venom (BeV). MATERIAL AND METHODS: The extract of J. gossypiifolia (JgE) leaves was obtained by maceration and remaceration. The phytochemical analysis was conducted and J. gossypiifolia nanoemulsion (JgNe) was obtained, characterized and assessed for stability. The cytotoxicity was determined in normal cells (erythrocytes and 3T3) using hemolytic assay and cell viability assay using crystal violet staining. The antioxidant activity was evaluated by the reduction of ABTS and DPPH radicals. The evaluation of wound healing was conducted in vivo following treatment with JgNe, wherein the percentage of wound closure and inflammatory mediators. The skin irritation test was assessed in vivo by applying JgNe directly to the animal's skin. In vitro, the antivenom capacity was evaluated through enzymatic inhibition assays (phospholipase A2 and hyaluronidase) of BeV. Additionally, the in vivo antidermonecrotic activity of JgNe was evaluated by measuring the reduction of the dermonecrotic halo. RESULTS: The HPLC-DAD analysis identified flavonoids, specifically vitexin, luteolin derivatives and apigenin derivatives. In addition, 95.08 ± 5.46 mg of gallic acid/g of extract and 137.92 ± 0.99 mg quercetin/g extract, was quantified. JgNe maintained stability over a 4-week period. Moreover, JgE and JgNe demonstrated no cytotoxicity in human erythrocytes and murine fibroblasts at tested concentrations (32.25-250 µg/mL). Additionally, exhibited significant antioxidant activity by reducing ABTS and DPPH radicals. The treatment with JgNe did not induce skin irritation and accelerated wound healing, with significant wound closure observed from 5th day and reduction in nitrite levels, myeloperoxidase activity, and cytokine. Both JgE and JgNe demonstrated in vitro inhibition of the phospholipase and hyaluronidase enzymes of BeV. Moreover, JgNe exhibited antidermonecrotic activity by reducing the dermonecrotic halo caused by BeV after 24 h. CONCLUSIONS: JgNe and JgE exhibited no cytotoxicity at the tested concentrations. Additionally, our findings demonstrate that JgNe has the ability to accelerate wound closure and reduce dermonecrosis caused by BeV, indicating to be promising formulation for complementary therapy to antivenom treatment.


Asunto(s)
Bothrops , Venenos de Crotálidos , Emulsiones , Necrosis , Extractos Vegetales , Hojas de la Planta , Cicatrización de Heridas , Animales , Extractos Vegetales/farmacología , Extractos Vegetales/química , Cicatrización de Heridas/efectos de los fármacos , Hojas de la Planta/química , Venenos de Crotálidos/toxicidad , Ratones , Masculino , Necrosis/tratamiento farmacológico , Piel/efectos de los fármacos , Piel/patología , Antioxidantes/farmacología , Antioxidantes/aislamiento & purificación , Supervivencia Celular/efectos de los fármacos , Células 3T3 , Hemólisis/efectos de los fármacos , Ratas Wistar , Nanopartículas/química , Serpientes Venenosas
13.
J Biomol Struct Dyn ; : 1-15, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37378497

RESUMEN

Myotoxicity caused by snakebite envenoming emerges as one of the main problems of ophidic accidents as it is not well neutralized by the current serum therapy. A promising alternative is to search for efficient small molecule inhibitors that can act against multiple venom components. Phospholipase A2 (PLA2) is frequently found in snake venom and is usually associated with myotoxicity. Thus it represents an excellent target for the search of new treatments. This work reports the effect of temperature in the inhibition of catalytic properties of PLA2 from Bothrops brazili venom by Rosmarinic (RSM) and Chlorogenic (CHL) acids through experimental and computational approaches. Three temperatures were evaluated (25, 37 and 50 °C). In the experimental section, enzymatic assays showed that RSM is a better inhibitor in all three temperatures. At 50 °C, the inhibition efficiency decayed significantly for both acids. Docking studies revealed that both ligands bind to the hydrophobic channel of the protein dimer where the phospholipid binds in the catalytic process, interacting with several functional residues. In this context, RSM presents better interaction energies due to stronger interactions with chain B of the dimer. Molecular dynamics simulations showed that RSM can establish selective interactions with ARG112B of PLA2, which is located next to residues of the putative Membrane Disruption Site in PLA2-like structures. The affinity of RSM and CHL acids towards PLA2 is mainly driven by electrostatic interactions, especially salt bridge interactions established with residues ARG33B (for CHL) and ARG112B (RSM) and hydrogen bonds with residue ASP89A. The inability of CHL to establish a stable interaction with ARG112B was identified as the reason for its lower inhibition efficiency compared to RSM at the three temperatures. Furthermore, extensive structural analysis was performed to explain the lower inhibition efficiency at 50 °C for both ligands. The analysis performed in this work provides important information for the future design of new inhibitors.Communicated by Ramaswamy H. Sarma.

14.
Toxicon ; 208: 1-12, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34979199

RESUMEN

Ophidism is a serious health problem worldwide and is included in the World Health Organization's (WHO's) list of Neglected Tropical Diseases. Although snakebite envenoming requires emergency treatment, currently the only treatment recommended by WHO is serotherapy, which has some disadvantages such as low access to the rural population, low effectiveness in neutralizing local effects, and high cost. In this context, new alternatives for the treatment of snakebites are required. The use of plant-derived compounds to inhibit the effects caused by snake venoms has been the object of a number of studies in recent years. This review aims to provide an up-to-date overview of the use of phenolic acids with therapeutic application against envenomation by snakes of different species. In this sense, structural analysis in silico and biological activities in vivo and in vitro were reported. The acids were subdivided into derivatives of benzoic and cinnamic acids, with derivatives of cinnamic acids being the most studied. Studies have revealed that these compounds are capable of inhibiting local and systemic effects induced by envenomation, and structural analyses indicate that the acids interact with important sites responsible for the action of toxins. Thus, it was reported that phenolic acids showed antiophidic potential, providing insights for future research to develop complementary drugs for the treatment of snakebites.


Asunto(s)
Mordeduras de Serpientes , Animales , Antivenenos/uso terapéutico , Humanos , Enfermedades Desatendidas , Mordeduras de Serpientes/tratamiento farmacológico , Venenos de Serpiente , Serpientes
15.
Toxins (Basel) ; 14(12)2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-36548785

RESUMEN

Snakebite envenoming represents a worldwide public health issue. Suitable technologies have been investigated for encapsulated recombinant or native proteins capable of inducing an effective and long-lasting adaptive immune response. Nanoparticles are colloidal dispersions that have been used as drug delivery systems for bioactive biological compounds. Venom-loaded nanoparticles modulate the protein release and activate the immune response to produce specific antibodies. In this study, biocompatible cationic nanoparticles with Bothrops jararaca venom were prepared to be used as a novel immunoadjuvant that shows a similar or improved immune response in antibody production when compared to a conventional immunoadjuvant (aluminum hydroxide). We prepared stable, small-sized and spherical particles with high Bothrops jararaca venom protein association efficiency. The high protein loading efficiency, electrophoresis, and zeta potential results demonstrated that Bothrops jararaca venom is adsorbed on the particle surface, which remained as a stable colloidal dispersion over 6 weeks. The slow protein release occurred and followed parabolic diffusion release kinetics. The in vivo studies demonstrated that venom-loaded nanoparticles were able to produce an immune response similar to that of aluminum hydroxide. The cationic nanoparticles (CNp) as carriers of bioactive molecules, were successfully developed and demonstrated to be a promising immunoadjuvant.


Asunto(s)
Bothrops , Venenos de Crotálidos , Nanopartículas , Animales , Venenos de Crotálidos/metabolismo , Adyuvantes Inmunológicos , Hidróxido de Aluminio , Proteínas/metabolismo , Inmunidad , Bothrops/metabolismo
16.
J Ethnopharmacol ; 294: 115364, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35551979

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Harpalyce brasiliana Benth (Leguminosae) is a shrub endemic to Brazil, popularly known as "snake's root." This species is used in folk medicine for the treatment of inflammation and snakebites. However, up to now there is no scientific research to justify its popular use. The study aimed to characterize the phytochemical profile of the hydroethanol extract from the roots of H. brasiliana (Hb), to evaluate its antioxidant and anti-inflammatory potential, as well as to investigate its cytotoxicity and acute toxicity. MATERIALS AND METHODS: The extract was obtained by maceration method using a solution of ethanol:water (70: 30, v/v). The phytochemical profile was obtained by liquid chromatography coupled to mass spectrometry. The cytotoxicity of extract (31-2000 µg/mL) was evaluated in vitro, by the 3-methyl-[4-5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) method using murine macrophage and fibroblast cell lines (RAW 247.6 and 3T3, respectively) and by the hemolytic assay. For the in vivo acute toxicity, the extract (2000 mg/kg) was administered and after 14 days the weight (body and organs) and hematological and biochemical parameters were analyzed. Chemical free radical scavenging effect of the extract (125-2000 µg/mL) was investigated through diphenylpicryl hydrazine reduction, total antioxidant capacity, reducing power, hydroxyl radical scavenging, and iron and copper chelating assays. In vitro anti-inflammatory effect of the extract (125, 500, and 2000 µg/mL) was demonstrated through of nitric oxide (NO) analyzed in lipopolysaccharides stimulated RAW 264.7 cells. In vivo anti-inflammatory activities were evaluated in carrageenan-induced paw edema and zymosan-air-pouch models, with gavage administration (post-treatment) of extract at 100, 200, and 400 mg/kg. For the first animal model, the anti-edematogenic activity and myeloperoxidase (MPO) levels were investigated, while in the zymosan-air-pouch model the leukocyte number, MPO, total protein and pro-inflammatory cytokine (IL-1ß, IL-6, and TNF-α) levels were quantified. In addition, the oxidative parameters such as malondialdehyde (MDA) and reduced glutathione (GSH) were determined. RESULTS: The phytochemical profile revealed the presence of 20 compounds, mainly prenylated and geranylated pterocarpans. The extract demonstrated no cytotoxicity in erythrocytes, macrophages and fibroblasts cells at the tested concentrations, as well as no sign of toxicity and mortality or significant alterations on the hematological and biochemical parameters in the acute toxicity model. The extract was also able to neutralize chemical free radicals, with copper and iron chelating effect. For the NO dosage, the extract evidenced the reduction of expression of NO after the administration of the extract (500 and 2000 µg/mL). The edematogenic model revealed a decrease in paw edema and MPO level, while the zymosan-air-pouch model evidenced a reduction of leukocyte number (especially of polymorphornuclears), MPO production, and total protein and cytokine levels, and demonstrated the antioxidant effect through a decrease in MDA and increase in GSH parameters. CONCLUSION: This approach demonstrates for the first time that Hb is not cytotoxic, has low acute toxicity, and possesses antioxidant and anti-inflammatory properties in preclinical analyses, corroborating its popular use.


Asunto(s)
Antioxidantes , Fabaceae , Animales , Antiinflamatorios/química , Antiinflamatorios/toxicidad , Antioxidantes/toxicidad , Carragenina , Cobre/efectos adversos , Citocinas/metabolismo , Edema/inducido químicamente , Edema/tratamiento farmacológico , Edema/metabolismo , Ratones , Fitoquímicos/toxicidad , Extractos Vegetales/uso terapéutico , Extractos Vegetales/toxicidad , Zimosan
17.
Biomed Pharmacother ; 148: 112766, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35247716

RESUMEN

Bothrops leucurus is responsible for most cases of snakebite in Northeast Brazil; however, this species is not included in the pool of venoms used in antivenom production in Brazil. The serotherapy has logistical and effectiveness limitations, which stimulates the search for therapeutic alternatives. Chlorogenic acid and rosmarinic acid present several biological activities, but their antiophidic potential has been poorly explored. Thus, the aim of this approach was to evaluate the potential inhibitory effects of these compounds on B. leucurus venom. Initially, the enzymatic inhibition of toxins was evaluated in vitro. Then, anti-hemorrhagic, anti-myotoxic, and anti-edematogenic assays were performed in vivo, as well analysis of several biochemical markers and hemostatic parameters. In addition, the interaction of inhibitors with SVMP and PLA2 was investigated by docking analysis. Results revealed that compounds inhibited in vitro the enzymatic activities and venom-induced edema, with a decrease in both myeloperoxidase and interleukin quantification. The inhibitors also attenuated the hemorrhagic and myotoxic actions and mitigated changes in serum biochemical and hemostatic markers, as well as decreased lipid peroxidation in liver and kidney tissues. Docking analysis revealed attractive interactions of both inhibitors with the zinc-binding site of SVMP and, in the case of PLA2, chlorogenic acid showed a similar inhibition mechanism to that described for rosmarinic acid. The results evidenced the antiophidic potential of both compounds, which showed higher efficiency than antivenom serum. Thus, both inhibitors are promising candidates for future adjuvants to be used to complement antivenom serotherapy.


Asunto(s)
Bothrops , Ácido Clorogénico/farmacología , Cinamatos/farmacología , Venenos de Crotálidos/toxicidad , Depsidos/farmacología , Animales , Biomarcadores , Femenino , Pruebas Hematológicas , Interleucinas/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Masculino , Metaloproteasas/efectos de los fármacos , Ratones , Peroxidasa/efectos de los fármacos , Fosfolipasas A2/efectos de los fármacos , Ácido Rosmarínico
18.
Front Pharmacol ; 13: 1104705, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36712663

RESUMEN

Bryophyllum pinnatum (Crassulaceae) is used in traditional medicine for treating skin wounds. In our previous study, a topical gel containing B. pinnatum aqueous leaf extract showed a preclinical anti-inflammatory effect in in vivo acute edema models. In continuation, the present study aims to evaluate the phytochemical content and the stability of a formulation in gel containing B. pinnatum aqueous leaf extract and its healing properties and mechanism of action through an experimental model of induction of skin wounds in rats and in vitro assays. The animals were treated topically for 7 or 14 days with a formulation in gel containing extract at 5% or a placebo or Fibrinase® in cream. In addition, to establish some quality control parameters, the total phenolic content (TPC), total flavonoid content (TFC), and a study focusing on the phytochemical and biological stability of a gel for 30 days at two different conditions (room temperature and 40°C/75% RH) were performed. Gel formulation containing extract showed a TPC and TFC of 2.77 ± 0.06 mg of gallic acid/g and 1.58 ± 0.03 mg of quercetin/g, respectively. Regarding the stability study, the formulation in gel showed no significant change in the following parameters: pH, water activity, chromatographic profile, and the content of the major compound identified in the extract. The gel formulation containing extract stimulated skin wound healing while reducing the wound area, as well as decreasing the inflammatory infiltrate, reducing the levels of IL-1ß and TNF-α, and stimulating angiogenesis with increased expression of VEGF, an effect similar to Fibrinase. In conclusion, the gel formulation containing extract exhibited relevant skin wound healing properties and, therefore, has the potential to be applied as a novel active ingredient for developing wound healing pharmaceuticals.

19.
Peptides ; 137: 170478, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33359395

RESUMEN

Infectious diseases and the rapid development of pathogens resistant to conventional drugs are a serious global public health problem, which motivates the search for new pharmacological agents. In this context, cationic peptides without disulfide bridges from different species of scorpion venom have been the target of scientific studies due to their multifunctional activities. Stigmurin is a linear peptide composed of 17 amino acid residues (Phe-Phe-Ser-Leu-Ile-Pro-Ser-Leu-Val-Gly-Gly-Leu-Ile-Ser-Ala-Phe-Lys-NH2), which is present in the venom gland of the scorpion Tityus stigmurus. Here we present investigations of the in vitro antioxidant action of Stigmurin together with the in vivo antibacterial and healing activity of this peptide in a wound infection model induced by Staphylococcus aureus. In addition, we have reports for the first time of the three-dimensional structure determined by NMR spectroscopy of a peptide without disulfide bridges present in scorpion venom from the Tityus genus. Stigmurin showed hydroxyl radical scavenging above 70 % at 10 µM and antibiotic action in the skin wound, reducing the number of viable microorganisms by 67.2 % on the 7 day after infection. Stigmurin (1 µg / µL) increased the retraction rate of the lesion, with wound area reduction of 43 % on the second day after skin injury, which indicates its ability to induce tissue repair. Stigmurin in trifluoroethanol:water exhibited a random conformation at the N-terminus region (Phe1 to Pro6), with a helical structure from Ser7 to Phe16. This structural information, allied with the multifunctional activity of Stigmurin, makes it an attractive candidate for the design of novel therapeutic agents.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Venenos de Escorpión/genética , Staphylococcus aureus/efectos de los fármacos , Infección de Heridas/tratamiento farmacológico , Animales , Antibacterianos/química , Antibacterianos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Humanos , Espectroscopía de Resonancia Magnética , Conformación Proteica , Venenos de Escorpión/química , Escorpiones/química , Staphylococcus aureus/patogenicidad , Infección de Heridas/microbiología
20.
Front Microbiol ; 12: 613155, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33692765

RESUMEN

Commiphora leptophloeos (Burseraceae) is a medicinal plant native to Brazil which is popularly used for treating oral and vaginal infections. There has been no scientific evidence pointing to its efficacy in the treatment of these infections. Thus, this study sought to investigate the cytotoxic, antifungal, and antibiofilm activity of C. leptophloeos against Candida spp. and to isolate, identify, and quantify the content of B-type oligomeric procyanidins (BDP) in the extract of C. leptophloeos stem bark. The extract and the n-butanol fraction were obtained by maceration and liquid-liquid partition, respectively. Phytochemical analysis performed by HPLC-PDA/ELSD and FIA-ESI-IT-MS/MS allowed the identification and quantification of BDP in the samples. The application of centrifugal partition chromatography helped isolate BDP, which was identified by 1H NMR and MS analyses. Candida spp. reference strains and clinical isolates (including fluconazole-resistant strains) derived from the blood cultures of candidemic patients and the vaginal secretion of patients with vulvovaginal candidiasis were used for evaluating the antifungal and antibiofilm effects. Minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC) were determined by the microdilution technique, and biofilm inhibition was evaluated through crystal violet and XTT assays. The combined action of BDP with fluconazole was determined by the checkerboard method. The extract, the n-butanol fraction, and the BDP exhibited antifungal activity with MIC values ranging from 312.5 to 2500 µg/mL and were found to significantly reduce the biofilm formed in all the Candida strains investigated. BDP showed a fungicidal potential against strains of Candida spp. (especially against fluconazole-resistant strains), with MIC and MFC values ranging from 156.2 to 2500 µg/mL. In addition, the combined application of BDP and fluconazole produced synergistic antifungal effects against resistant Candida spp. (FICI = 0.31-1.5). The cytotoxic properties of the samples evaluated in human erythrocytes through hemolytic test did not show hemolytic activity under active concentrations. The findings of the study show that C. leptophloeos has antifungal and antibiofilm potential but does not cause toxicity in human erythrocytes. Finally, BDP, which was isolated for the first time in C. leptophloeos, was found to exhibit antifungal effect against Candida spp. either when applied alone or in combination with fluconazole.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA