RESUMEN
The food enzyme endo-1,4-ß-xylanase (4-ß-d-xylan xylanohydrolase, EC 3.2.1.8) is produced with the genetically modified Bacillus velezensis strain AR-112 by AB Enzymes GmbH. The genetic modifications do not give rise to safety concerns. The food enzyme is free from viable cells of the production organism and its DNA. It is intended to be used in baking processes. Dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 0.024 mg TOS/kg body weight (bw) per day in European populations. As the production strain B. velezensis strain AR-112 meets the requirements for the qualified presumption of safety (QPS) approach to safety assessment and no issue of concern arose from the production process, no toxicological data are required. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that, under the intended conditions of use, the risk of allergic reactions upon dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.
RESUMEN
The food enzyme phosphoinositide phospholipase C (1-phosphatidyl-1D-myo-inositol-4,5-bisphosphate inositoltrisphosphohydrolase EC 3.1.4.11.) is produced with the genetically modified Pseudomonas fluorescens strain PIC by DSM Food specialties B.V. The genetic modifications do not give rise to safety concerns. The food enzyme is free from viable cells of the production organism and its DNA. It is intended to be used in the processing of fats and oils for the production of refined edible fats and oils by degumming. Since residual amounts of the total organic solids are removed by the washing and purification steps applied during degumming, dietary exposure estimation and toxicity testing were considered unnecessary. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no matches were found. The Panel considered that the risk of allergic reactions by dietary exposure cannot be excluded, but the likelihood for this to occur is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.
RESUMEN
The food enzyme glucan 1,4-α-maltohydrolase (4-α-d-glucan α-maltohydrolase; EC 3.2.1.133) is produced with the genetically modified Saccharomyces cerevisiae strain LALL-MA+ by Danstar Ferment AG. The genetic modifications do not give rise to safety concerns. The food enzyme is free from viable cells of the production organism and its DNA. It is intended to be used in the processing of cereals and other grains for production of baked products. Dietary exposure was estimated to be up to 0.014 mg TOS/kg body weight per day in European populations. Given the QPS status of the production strain and the absence of concerns resulting from the food enzyme manufacturing process, toxicity tests were considered unnecessary by the Panel. A search for the identity of the amino acid sequence of the food enzyme to known allergens was made and four matches were found, three with respiratory allergens and one with an allergen from mosquito (injected). The Panel considered that the risk of allergic reactions upon dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns, under the intended conditions of use.
RESUMEN
The European Union (EU) is committed to transitioning toward a circular economy model, with food waste being one of the areas to be targeted. To close the loop of food waste generated during food processing and discarded at the retail or consumption phases, research and innovation parties proposed to valorize agro-food by-products to produce novel foods and food improvement agents (food additives, food enzymes, and food flavorings). In the EU, the authorization of such novel foods and food improvement agents is governed by different regulatory frameworks. A centralized safety assessment by the European Food Safety Authority (EFSA) is the prerequisite for their authorization through the so-called Union Lists. Up to December 2023, EFSA published 45 scientific opinions on the safety of novel foods, food enzymes, and food additives derived from by-products of plant and animal origin. The current study illustrates examples of these by-products for the production of novel foods or food improvement agents and the data requirements behind their respective safety assessments conducted by EFSA. In this review, applications on novel foods, food enzymes, and food additives received by EFSA were screened and analyzed to find the common scientific requirements and differences in terms of the safety evaluation of such products. Various by-products (i.e., corncobs, coffee husks, spent grains of barley and rice, grape pomace, pumpkin peels, bovine whey, eggshells, shrimp heads, and animal organs or tissues) were described in the applications as being processed (extraction, physical treatments, and chemical and enzymatic reactions) to obtain novel foods and food improvement agents. The heterogeneity and complexity of these products emphasize the challenge of their safety assessment, depending on the characteristics of each product. However, as this study shows, the scientific requirements underpinning their safety do not differ substantially in the different regulated product areas considered, with similar information needed to assess their safety in terms of identity, production process, compositional characterization, proposed/intended uses and exposure assessment, toxicological information, and allergenicity data. Additional nutritional information and data on the history of use are required in the case of novel foods.
RESUMEN
The food enzyme microbial collagenase (EC 3.4.24.3) is produced with the genetically modified Streptomyces violaceoruber strain pCol by Nagase (Europa) GmbH. The genetic modifications do not give rise to safety concerns. The food enzyme is free from viable cells of the production organism and its DNA. It is intended to be used in two food manufacturing processes: the production of modified meat and fish products and the production of protein hydrolysates from meat and fish proteins. The dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 1.098 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 940 mg TOS/kg bw per day, the highest dose tested, which, when compared with the estimated dietary exposure, resulted in a margin of exposure of at least 856. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that the risk of allergic reactions by dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns, under the intended conditions of use.
RESUMEN
The food enzyme mucorpepsin (EC 3.4.23.23) is produced with the non-genetically modified Rhizomucor miehei strain M19-21 by Meito Sangyo Co., Ltd. The enzyme is chemically modified to produce a thermolabile form. The food enzyme was considered free from viable cells of the production organism. It is intended to be used in the processing of dairy products for the production of cheese and fermented dairy products. Based on the maximum use levels, dietary exposure was estimated to be up to 0.108 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 226 mg TOS/kg bw per day, the highest dose tested, which, when compared with the estimated dietary exposure, results in a margin of exposure of at least 2093. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and four matches to respiratory allergens and one match to a food allergen (mustard) were found. The Panel considered that the risk of allergic reactions upon dietary exposure to this food enzyme, particularly in individuals sensitised to mustard proteins, cannot be excluded. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns, under the intended conditions of use.
RESUMEN
The food enzyme leucyl aminopeptidase (EC 3.4.11.1) is produced with the non-genetically modified Aspergillus sp. strain AE-MB by Amano Enzyme Inc. The food enzyme is considered free from viable cells of the production organism. It is intended to be used in five food manufacturing processes: processing of dairy products for the production of (1) flavouring preparations; processing of plant- and fungal-derived products for the production of (2) protein hydrolysates; processing of meat and fish products for the production of (3) protein hydrolysates, (4) modified meat and fish products and processing of (5) yeast and yeast products. Dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 2.273 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 183 mg TOS/kg bw per day. The calculated margin of exposure for each age group was 135 (infants), 81 (toddlers), 83 (children), 109 (adolescents), 160 (adults) and 184 (the elderly). A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no matches were found. The Panel considered that the risk of allergic reactions by dietary exposure cannot be excluded, but the likelihood is low. The safety of the food enzyme could not be established given the derived margins of exposure. Therefore, the Panel concluded that this food enzyme could not be considered safe under the intended conditions of use.
RESUMEN
The food enzyme cellobiose phosphorylase (cellobiose: phosphate α-d-glucosyltransferase; EC 2.4.1.20) is produced with the genetically modified Escherichia coli strain LE1B109-pPB130 by c-LEcta GmbH. The genetic modifications do not give rise to safety concerns. The food enzyme is considered free from viable cells of the production organism and its DNA. It is intended to be used in combination with a sucrose phosphorylase in the production of the specialty carbohydrate cellobiose. Since residual amounts of total organic solids are removed by downstream purification steps, the Panel considered that toxicological studies other than assessment of allergenicity were unnecessary and a dietary exposure was not estimated. A search for similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that, under the intended conditions of use, the risk of allergic reactions upon dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.
RESUMEN
The food enzyme sucrose phosphorylase (sucrose: phosphate α- d-glucosyltransferase; EC 2.4.1.7) is produced with the genetically modified Escherichia coli strain LE1B109-pPB129 by c-LEcta GmbH. The genetic modifications do not give rise to safety concerns. The food enzyme was free from viable cells of the production organism. It is intended to be used in combination with a cellobiose phosphorylase in the production of the specialty carbohydrate cellobiose. Since residual amounts of food enzyme-total organic solids are removed by the downstream purification steps, the Panel considered that toxicological studies other than assessment of allergenicity were unnecessary and a dietary exposure was not estimated. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that the risk of allergic reactions upon dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.
RESUMEN
The food enzyme α-amylase (4-α-d-glucan glucanohydrolase; EC 3.2.1.1) is produced with the non-genetically modified microorganism Bacillus licheniformis strain AE-TA by Amano Enzyme Inc. The food enzyme is intended to be used in eight food manufacturing processes. Since residual amounts of food enzyme-total organic solids (TOS) are removed in two food manufacturing processes, dietary exposure was calculated only for the remaining six processes. It was estimated to be up to 0.056 mg TOS/kg body weight per day in European populations. The production strain of the food enzyme fulfils the requirements for the qualified presumption of safety approach to safety assessment. Consequently, in the absence of other concerns, the Panel considered that toxicological studies were not needed for the safety assessment of this food enzyme. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and two matches with respiratory allergens were found. The Panel considered that the risk of allergic reactions upon dietary exposure to this food enzyme cannot be excluded (except for the production of distilled alcohol), but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.
RESUMEN
The food enzyme carboxypeptidase D (EC 3.4.16.6) is produced with the genetically modified Aspergillus oryzae strain NZYM-MK by Novozymes A/S. It is free from viable cells of the production organism and its DNA. The genetic modifications do not give rise to safety concerns. The food enzyme is intended to be used in five food manufacturing processes. Dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 0.908 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 2220 mg TOS/kg bw per day, the highest dose tested, which, when compared with the estimated dietary exposure, resulted in a margin of exposure of at least 2445. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and two matches were found, one with a food allergen (wheat). The Panel considered that a risk of allergic reactions upon dietary exposure to this food enzyme, particularly in individuals sensitised to wheat, cannot be excluded, but will not exceed that of wheat consumption. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.
RESUMEN
The food enzyme asparaginase (l-asparagine amidohydrolase; EC 3.5.1.1) is produced with the genetically modified Aspergillus niger strain ASP by DSM Food Specialties B.V. The genetic modifications do not give rise to safety concerns. The food enzyme was considered free from viable cells of the production organism and its DNA. The food enzyme is intended to be used in the prevention of acrylamide formation in foods and in the processing of yeast and yeast products. Dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 0.792 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level at the highest dose tested of 1038 mg TOS/kg bw per day, which when compared with the estimated dietary exposure, resulted in a margin of exposure of at least 1311. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that the risk of allergic reactions upon dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns, under the intended conditions of use.
RESUMEN
This assessment addresses a food enzyme preparation consisting of the immobilised non-viable cells of the non-genetically modified bacterium identified by the applicant (Samyang Corporation) as Microbacterium foliorum strain SYG27B. This strain produces the enzyme D-psicose 3-epimerase (EC 5.1.3.30). The food enzyme preparation is used for the isomerisation of fructose to produce the speciality carbohydrate D-allulose (synonym D-psicose). Since the hazard identification and characterisation could not be made and the identity of the production organism could not be established, the Panel was unable to complete the assessment of this food enzyme preparation containing D-psicose 3-epimerase.
RESUMEN
The food enzyme mucorpepsin (EC 3.4.23.23) is produced with the non-genetically modified Rhizomucor miehei strain LP-N836 by Meito Sangyo Co., Ltd. The native enzyme can be chemically modified to produce a more thermolabile form. The food enzyme is free from viable cells of the production organism. It is intended to be used in the processing of dairy products for the production of cheese and fermented dairy products. Dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 0.108 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 95 mg TOS/kg bw per day, the mid-dose tested, which when compared with the estimated dietary exposure, resulted in a margin of exposure of at least 880. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and four matches with respiratory allergens and one with a food allergen (mustard) were found. The Panel considered that the risk of allergic reactions upon dietary exposure to this food enzyme, particularly in individuals sensitised to mustard proteins, cannot be excluded. Based on the data provided, the Panel concluded that both the native and thermolabile forms of this food enzyme do not give rise to safety concerns under the intended conditions of use.
RESUMEN
The lipid-lowering effect of dry beans and their impact on lipid and cholesterol metabolism have been established. This study investigates the underlying mechanisms of this effect and explore how the structural integrity of processed beans influences their ability to modulate lipolysis using the INFOGEST static in vitro digestion model. Dietary fiber (DF) fractions were found to decrease lipolysis by increasing the digesta viscosity, leading to depletion-flocculation and/or coalescence of lipid droplets. Bean flours exhibited a more pronounced reduction in lipolysis compared to DF. Furthermore, different levels of bean structural integrity showed varying effects on modulating lipolysis, with medium-sized bean particles demonstrating a stronger reduction. Hydrothermal treatment compromised the ability of beans to modulate lipid digestion, while hydrostatic-pressure treatment (600 MPa/5min) enhanced the effect. These findings highlight that the lipid-lowering effect of beans is not solely attributed to DF but also to the overall bean matrix, which can be manipulated through processing techniques.
Asunto(s)
Phaseolus , Phaseolus/química , Fibras de la Dieta/metabolismo , Lipólisis , Lípidos , DigestiónRESUMEN
The food enzyme α-amylase (4-α-d-glucan glucanohydrolase; EC 3.2.1.1) is produced with the non-genetically modified Bacillus amyloliquefaciens strain NZYM-WR by Novozymes A/S. The production strain met the requirements for the qualified presumption of safety (QPS) approach. The food enzyme is intended to be used in nine food manufacturing processes: processing of cereals and other grains for the production of baked products, cereal-based products other than baked, glucose syrups and other starch hydrolysates, distilled alcohol and brewed products; production of refined and unrefined sugar, production of plant-based analogues of milk and milk products; processing of fruits and vegetables for the production of juices and fruit and vegetable products other than juices. Since residual amounts of total organic solids (TOS) are removed during two processes, a dietary exposure was calculated only for the remaining seven food manufacturing processes. Exposure was estimated to be up to 0.450 mg TOS/kg body weight per day in European populations. As the production strain qualified for the QPS approach and no issues of concern arose from the production process of the food enzyme, the Panel considered that toxicological studies were unnecessary. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and one match with a respiratory allergen was found. The Panel considered that the risk of allergic reactions upon dietary exposure to this food enzyme cannot be excluded (except for distilled alcohol production), but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.
RESUMEN
The food enzyme subtilisin (serine endopeptidase, EC 3.4.21.62) is produced with the non-genetically modified microorganism Bacillus paralicheniformis strain LMG S-30155 by ENMEX SA de CV, now part of Kerry Food Ingredients (Cork) Ltd. The food enzyme is intended to be used in oil production, hydrolysis of vegetable/microbial/animal proteins, yeast processing and production of flavouring preparations. The production strain of the food enzyme contains known antimicrobial resistance genes and genes involved in bacitracin biosynthesis. Consequently, it does not fulfil the requirements for the QPS approach to safety assessment. Bacitracin was detected in the food enzyme and the â â â â â The presence of bacitracin, a medically important antimicrobial, in the food enzyme represents a risk for the development of resistance in bacteria. Due to the presence of bacitracin, the Panel concluded that the food enzyme subtilisin produced with the non-genetically modified Bacillus paralicheniformis strain LMG S-30155 cannot be considered safe.
RESUMEN
The food enzyme α-amylase (4-α-d-glucan glucanohydrolase; EC 3.2.1.1) is produced with the non-genetically modified microorganism Bacillus amyloliquefaciens strain BA by HBI Enzymes Inc. The enzyme under assessment is intended to be used in six food processes: baking processes, brewing processes, distilled alcohol production, starch processing for the production of glucose syrups and other starch hydrolysates, production of dairy analogues and production of rice-based meals. Since residual amounts of total organic solids (TOS) are removed during distillation and during the production of glucose syrups and other starch hydrolysates, dietary exposure was calculated only for the remaining four food manufacturing processes. It was estimated to be up to 4.805 mg TOS/kg body weight (bw) per day in European populations. The applicant did not provide sufficient data to demonstrate that the production strain meets the qualified presumption of safety (QPS) criteria, or proof of absence of viable cells and DNA from the production organism in the food enzyme. Therefore, the Panel was not able to conclude on the safety of the microbial source. A margin of exposure could not be calculated in the absence of toxicological studies. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and two matches with respiratory allergens were found. The Panel considered that, under the intended conditions of use (other than distilled alcohol production), the risk of allergic reactions by dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel could not conclude on the safety of this food enzyme, under the intended conditions of use.
RESUMEN
The food enzyme containing chymosin (EC 3.4.23.4) and pepsin A (EC 3.4.23.1) is prepared from the abomasum of calves and cows (Bos taurus) by Chr. Hansen. The food enzyme is intended to be used in milk processing for cheese production and in milk processing for the production of fermented milk products. As no concerns arise from the animal source of the food enzyme, from its manufacture, and based on the history of safe use and consumption, the Panel considered that toxicological data were unnecessary and an estimation of dietary exposure was not required. A search for the similarity of the amino acid sequences of the two proteins (chymosin and pepsin A) to those of known allergens was made and one match with pig pepsin, a respiratory allergen, was found. The Panel considered that, under the intended conditions of use, the risk of allergic reactions upon dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.
RESUMEN
The food enzyme α-amylase (4-α-d-glucan glucanohydrolase; EC 3.2.1.1) is produced with the non-genetically modified Aspergillus niger strain AS 29-286 by Shin Nihon Chemical Co., Ltd. The food enzyme is considered free from viable cells of the production organism. It is intended to be used in seven food manufacturing processes: baking processes, fruit and vegetable processing for juice production, fruit and vegetable processing for products other than juices, distilled alcohol production, starch processing for the production of maltodextrins, brewing processes and non-wine vinegar production. Since residual amounts of total organic solids (TOS) are removed during distilled alcohol production and starch processing for the production of maltodextrins, dietary exposure was calculated only for the remaining five food manufacturing processes. It was estimated to be up to 2.158 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 1,774 mg TOS/kg bw per day, the highest dose tested, which when compared with the estimated dietary exposure, resulted in a margin of exposure of at least 822. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and four matches with respiratory allergens were found. The Panel considered that, under the intended conditions of use, the risk of allergic reactions upon dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.