Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell ; 157(7): 1577-90, 2014 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-24949970

RESUMEN

Clec16a has been identified as a disease susceptibility gene for type 1 diabetes, multiple sclerosis, and adrenal dysfunction, but its function is unknown. Here we report that Clec16a is a membrane-associated endosomal protein that interacts with E3 ubiquitin ligase Nrdp1. Loss of Clec16a leads to an increase in the Nrdp1 target Parkin, a master regulator of mitophagy. Islets from mice with pancreas-specific deletion of Clec16a have abnormal mitochondria with reduced oxygen consumption and ATP concentration, both of which are required for normal ß cell function. Indeed, pancreatic Clec16a is required for normal glucose-stimulated insulin release. Moreover, patients harboring a diabetogenic SNP in the Clec16a gene have reduced islet Clec16a expression and reduced insulin secretion. Thus, Clec16a controls ß cell function and prevents diabetes by controlling mitophagy. This pathway could be targeted for prevention and control of diabetes and may extend to the pathogenesis of other Clec16a- and Parkin-associated diseases.


Asunto(s)
Diabetes Mellitus Tipo 1/genética , Islotes Pancreáticos/patología , Lectinas Tipo C/metabolismo , Mitofagia , Proteínas de Transporte de Monosacáridos/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/química , Diabetes Mellitus Tipo 1/patología , Predisposición Genética a la Enfermedad , Glucosa/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Lectinas Tipo C/química , Lectinas Tipo C/genética , Lisosomas/química , Lisosomas/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Datos de Secuencia Molecular , Proteínas de Transporte de Monosacáridos/química , Proteínas de Transporte de Monosacáridos/genética , Polimorfismo de Nucleótido Simple , Ubiquitina-Proteína Ligasas
2.
J Biol Chem ; 285(51): 40050-9, 2010 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-20943662

RESUMEN

The calcium-regulated phosphatase calcineurin intersects with both calcium and cAMP-mediated signaling pathways in the pancreatic ß-cell. Pharmacologic calcineurin inhibition, necessary to prevent rejection in the setting of organ transplantation, is associated with post-transplant ß-cell failure. We sought to determine the effect of calcineurin inhibition on ß-cell replication and survival in rodents and in isolated human islets. Further, we assessed whether the GLP-1 receptor agonist and cAMP stimulus, exendin-4 (Ex-4), could rescue ß-cell replication and survival following calcineurin inhibition. Following treatment with the calcineurin inhibitor tacrolimus, human ß-cell apoptosis was significantly increased. Although we detected no human ß-cell replication, tacrolimus significantly decreased rodent ß-cell replication. Ex-4 nearly normalized both human ß-cell survival and rodent ß-cell replication when co-administered with tacrolimus. We found that tacrolimus decreased Akt phosphorylation, suggesting that calcineurin could regulate replication and survival via the PI3K/Akt pathway. We identify insulin receptor substrate-2 (Irs2), a known cAMP-responsive element-binding protein target and upstream regulator of the PI3K/Akt pathway, as a novel calcineurin target in ß-cells. Irs2 mRNA and protein are decreased by calcineurin inhibition in both rodent and human islets. The effect of calcineurin on Irs2 expression is mediated at least in part through the nuclear factor of activated T-cells (NFAT), as NFAT occupied the Irs2 promoter in a calcineurin-sensitive manner. Ex-4 restored Irs2 expression in tacrolimus-treated rodent and human islets nearly to baseline. These findings reveal calcineurin as a regulator of human ß-cell survival in part through regulation of Irs2, with implications for the pathogenesis and treatment of diabetes following organ transplantation.


Asunto(s)
Calcineurina/farmacología , Proliferación Celular/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Calcineurina/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , AMP Cíclico/metabolismo , Diabetes Mellitus/etiología , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patología , Exenatida , Regulación de la Expresión Génica/efectos de los fármacos , Receptor del Péptido 1 Similar al Glucagón , Humanos , Hipoglucemiantes/farmacología , Inmunosupresores/farmacología , Proteínas Sustrato del Receptor de Insulina/metabolismo , Células Secretoras de Insulina/patología , Ratones , Factores de Transcripción NFATC/metabolismo , Trasplante de Órganos/efectos adversos , Péptidos/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Glucagón/agonistas , Receptores de Glucagón/metabolismo , Tacrolimus/farmacología , Ponzoñas/farmacología
3.
Diabetes ; 64(10): 3475-84, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26085571

RESUMEN

Mitophagy is a critical regulator of mitochondrial quality control and is necessary for elimination of dysfunctional mitochondria to maintain cellular respiration. Here, we report that the homeodomain transcription factor Pdx1, a gene associated with both type 2 diabetes and monogenic diabetes of the young, regulates mitophagy in pancreatic ß-cells. Loss of Pdx1 leads to abnormal mitochondrial morphology and function as well as impaired mitochondrial turnover. High-throughput expression microarray and chromatin occupancy analyses reveal that Pdx1 regulates the expression of Clec16a, a type 1 diabetes gene and itself a key mediator of mitophagy through regulation of the E3 ubiquitin ligase Nrdp1. Indeed, expression of Clec16a and Nrdp1 are both reduced in Pdx1 haploinsufficient islets, and reduction of Pdx1 impairs fusion of autophagosomes containing mitochondria to lysosomes during mitophagy. Importantly, restoration of Clec16a expression after Pdx1 loss of function restores mitochondrial trafficking during mitophagy and improves mitochondrial respiration and glucose-stimulated insulin release. Thus, Pdx1 orchestrates nuclear control of mitochondrial function in part by controlling mitophagy through Clec16a. The novel Pdx1-Clec16a-Nrdp1 pathway we describe provides a genetic basis for the pathogenesis of mitochondrial dysfunction in multiple forms of diabetes that could be targeted for future therapies to improve ß-cell function.


Asunto(s)
Proteínas Portadoras/metabolismo , Regulación de la Expresión Génica/fisiología , Proteínas de Homeodominio/metabolismo , Células Secretoras de Insulina/fisiología , Lectinas Tipo C/metabolismo , Mitofagia/fisiología , Proteínas de Transporte de Monosacáridos/metabolismo , Transactivadores/metabolismo , Animales , Proteínas Portadoras/genética , ADN/genética , ADN/metabolismo , Proteínas de Homeodominio/genética , Humanos , Lectinas Tipo C/genética , Ratones , Mitocondrias/fisiología , Proteínas de Transporte de Monosacáridos/genética , Análisis por Matrices de Proteínas , ARN/genética , ARN/metabolismo , Transactivadores/genética , Ubiquitina-Proteína Ligasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA