Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(21)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36362211

RESUMEN

Translation of cell therapies into clinical practice requires the adoption of robust production protocols in order to optimize and standardize the manufacture and cryopreservation of cells, in compliance with good manufacturing practice regulations. Between 2012 and 2020, we conducted two phase I clinical trials (EudraCT 2009-014484-39, EudraCT 2015-004855-37) on amyotrophic lateral sclerosis secondary progressive multiple sclerosis patients, respectively, treating them with human neural stem cells. Our production process of a hNSC-based medicinal product is the first to use brain tissue samples extracted from fetuses that died in spontaneous abortion or miscarriage. It consists of selection, isolation and expansion of hNSCs and ends with the final pharmaceutical formulation tailored to a specific patient, in compliance with the approved clinical protocol. The cells used in these clinical trials were analyzed in order to confirm their microbiological safety; each batch was also tested to assess identity, potency and safety through morphological and functional assays. Preclinical, clinical and in vitro nonclinical data have proved that our cells are safe and stable, and that the production process can provide a high level of reproducibility of the cultures. Here, we describe the quality control strategy for the characterization of the hNSCs used in the above-mentioned clinical trials.


Asunto(s)
Esclerosis Amiotrófica Lateral , Células-Madre Neurales , Humanos , Reproducibilidad de los Resultados , Criopreservación , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Control de Calidad
2.
J Intensive Care Med ; 35(3): 279-283, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29141526

RESUMEN

PURPOSE: Gastrointestinal dysfunction and failure (GID and GIF) in critically ill patients are a common, relevant, and underestimated complications in ICU patients. The aims of this study were (1) to determine plasmatic levels of citrulline, glutamine, and arginine as markers of GID/GIF in critically ill patients with or without GID/GIF with or without multiple organ failure (MOF) and (2) to assess the role of intra-abdominal hypertension in these patient groups. MATERIALS AND METHODS: This is a 1-year, monocentric (Italian hospital), prospective observational study. Inclusion criteria were adult patients with GID/GIF, with or without MOF. The GIF score was daily evaluated in 39 critically ill patients. Amino acids were measured at the time of GID or GIF. RESULTS: We enrolled 39 patients. Nine patients developed GID and 7 GIF; 6 of patients with GID/GIF developed MOF. Citrulline was lower (P < .001) in patients with GID/GIF (11.3 [4.4] µmol/L), compared to patients without GID/GIF (22.4 [6.8] µmol/L); likewise, glutamine was lower in patients with GID/GIF, whereas arginine was nonstatistically different between the 2 groups. Intra-abdominal pressure was higher in patients affected by MOF (13.0 [2.2] mm Hg) than in patients with GIF/GID without MOF (9.6 [2.6] mm Hg) and compared to patients without GID/GIF (7.2 [2.1] mm Hg). CONCLUSIONS: Both GID and GIF in critically ill patients are associated with low levels of citrulline and glutamine, which could be considered as markers of small bowel dysfunction. The higher the GIF score, the lower the citrulline levels. Patients affected by MOF had higher levels of intra-abdominal pressure.


Asunto(s)
Citrulina/sangre , Enfermedades Gastrointestinales/sangre , Insuficiencia Multiorgánica/sangre , Puntuaciones en la Disfunción de Órganos , Anciano , Arginina/sangre , Biomarcadores/sangre , Enfermedad Crítica , Femenino , Enfermedades Gastrointestinales/complicaciones , Enfermedades Gastrointestinales/mortalidad , Glutamina/sangre , Humanos , Unidades de Cuidados Intensivos , Hipertensión Intraabdominal/sangre , Hipertensión Intraabdominal/etiología , Hipertensión Intraabdominal/mortalidad , Masculino , Persona de Mediana Edad , Insuficiencia Multiorgánica/complicaciones , Insuficiencia Multiorgánica/mortalidad , Estudios Prospectivos
3.
Int J Mol Sci ; 21(5)2020 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-32182809

RESUMEN

Recent cutting-edge human genetics technology has allowed us to identify copy number variations (CNVs) and has provided new insights for understanding causative mechanisms of human diseases. A growing number of studies show that CNVs could be associated with physiological mechanisms linked to evolutionary trigger, as well as to the pathogenesis of various diseases, including cancer, autoimmune disease and mental disorders such as autism spectrum disorders, schizophrenia, intellectual disabilities or attention-deficit/hyperactivity disorder. Their incomplete penetrance and variable expressivity make diagnosis difficult and hinder comprehension of the mechanistic bases of these disorders. Additional elements such as co-presence of other CNVs, genomic background and environmental factors are involved in determining the final phenotype associated with a CNV. Genetically engineered animal models are helpful tools for understanding the behavioral consequences of CNVs. However, the genetic background and the biology of these animal model systems have sometimes led to confusing results. New cellular models obtained through somatic cellular reprogramming technology that produce induced pluripotent stem cells (iPSCs) from human subjects are being used to explore the mechanisms involved in the pathogenic consequences of CNVs. Considering the vast quantity of CNVs found in the human genome, we intend to focus on reviewing the current literature on the use of iPSCs carrying CNVs on chromosome 15, highlighting advantages and limits of this system with respect to mouse model systems.


Asunto(s)
Sistema Nervioso Central/fisiología , Cromosomas Humanos Par 15/genética , Variaciones en el Número de Copia de ADN/genética , Enfermedades Genéticas Congénitas/genética , Inestabilidad Genómica/genética , Células Madre Pluripotentes Inducidas/fisiología , Animales , Reprogramación Celular/genética , Humanos
4.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(3): 351-357, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28011403

RESUMEN

Increased plasma levels of free fatty acids, including palmitic acid (PA), cause insulin resistance in endothelium characterized by a decreased synthesis of insulin-mediated vasodilator nitric oxide (NO), and by an increased production of the vasoconstrictor protein, endothelin-1. Several in vitro and in vivo studies suggest that anthocyanins, natural phenols commonly present in food and vegetables from Mediterranean Diet, exert significant cardiovascular health-promoting activities. These effects are possibly mediated by a positive regulation of the transcription factor Nrf2 and activation of cellular antioxidant and cytoprotective genes. The present study examined, at a molecular level, the effects of cyanidin-3-O-glucoside (C3G), a widely distributed anthocyanin, on PA-induced endothelial dysfunction and insulin resistance in human umbilical vein endothelial cells (HUVECs). Our results indicate that C3G pretreatment effectively reverses the effects of PA on PI3K/Akt axis, and restores eNOS expression and NO release, altered by PA. We observed that these effects were exerted by changes on the phosphorylation of IRS-1 on specific serine and tyrosine residues modulated by PA through the modulation of JNK and IKK activity. Furthermore, silencing Nrf2 transcripts demonstrated that the protective effects of C3G are directly related to the activation of Nrf2.


Asunto(s)
Antocianinas/farmacología , Endotelio Vascular/efectos de los fármacos , Glucósidos/farmacología , Proteínas Sustrato del Receptor de Insulina/metabolismo , Resistencia a la Insulina/fisiología , Ácido Palmítico/farmacología , Antioxidantes/metabolismo , Células Cultivadas , Endotelio Vascular/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina/metabolismo , Transducción de Señal/efectos de los fármacos , Tirosina/metabolismo
5.
Mediators Inflamm ; 2017: 3454023, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28373746

RESUMEN

Intestinal epithelium represents a protective physical barrier and actively contributes to the mucosal immune system. Polarized basolateral intestinal secretion of inflammatory mediators, followed by activation of NF-κB signaling and inflammatory pathways in endothelial cells, efficiently triggers extravasation of neutrophils from the vasculature, therefore contributing to the development and maintenance of intestinal inflammation. Proper regulation of NF-κB activation at the epithelial interface is crucial for the maintenance of physiological tissue homeostasis. Many papers reported that anthocyanins, a group of compounds belonging to flavonoids, possess anti-inflammatory effects and modulate NF-κB activity. In this study, by using a coculture in vitro system, we aimed to evaluate the effects of TNF-α-stimulated intestinal cells on endothelial cells activation, as well as the protective effects of cyanidin-3-glucoside (C3G). In this model, TNF-α induced nuclear translocation of NF-κB and TNF-α and IL-8 gene expression in Caco-2 cells, whereas C3G pretreatment dose-dependently reduced these effects. Furthermore, TNF-α-stimulated Caco-2 cells induced endothelial cells activation with increased E-selectin and VCAM-1 mRNA, leukocyte adhesion, and NF-κB levels in HUVECs, which were inhibited by C3G. We demonstrated that selective inhibition of the NF-κB pathway in epithelial cells represents the main mechanism by which C3G exerts these protective effects. Thus, anthocyanins could contribute to the management of chronic gut inflammatory diseases.


Asunto(s)
Antocianinas/farmacología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Glucósidos/farmacología , Intestinos/citología , Células CACO-2 , Selectina E/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Immunoblotting , Interleucina-8/metabolismo , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/farmacología , Molécula 1 de Adhesión Celular Vascular/metabolismo
6.
J Transl Med ; 13: 17, 2015 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-25889343

RESUMEN

BACKGROUND: We report the initial results from a phase I clinical trial for ALS. We transplanted GMP-grade, fetal human neural stem cells from natural in utero death (hNSCs) into the anterior horns of the spinal cord to test for the safety of both cells and neurosurgical procedures in these patients. The trial was approved by the Istituto Superiore di Sanità and the competent Ethics Committees and was monitored by an external Safety Board. METHODS: Six non-ambulatory patients were treated. Three of them received 3 unilateral hNSCs microinjections into the lumbar cord tract, while the remaining ones received bilateral (n = 3 + 3) microinjections. None manifested severe adverse events related to the treatment, even though nearly 5 times more cells were injected in the patients receiving bilateral implants and a much milder immune-suppression regimen was used as compared to previous trials. RESULTS: No increase of disease progression due to the treatment was observed for up to18 months after surgery. Rather, two patients showed a transitory improvement of the subscore ambulation on the ALS-FRS-R scale (from 1 to 2). A third patient showed improvement of the MRC score for tibialis anterior, which persisted for as long as 7 months. The latter and two additional patients refused PEG and invasive ventilation and died 8 months after surgery due to the progression of respiratory failure. The autopsies confirmed that this was related to the evolution of the disease. CONCLUSIONS: We describe a safe cell therapy approach that will allow for the treatment of larger pools of patients for later-phase ALS clinical trials, while warranting good reproducibility. These can now be carried out under more standardized conditions, based on a more homogenous repertoire of clinical grade hNSCs. The use of brain tissue from natural miscarriages eliminates the ethical concerns that may arise from the use of fetal material. TRIAL REGISTRATION: EudraCT:2009-014484-39 .


Asunto(s)
Esclerosis Amiotrófica Lateral/terapia , Células-Madre Neurales/citología , Trasplante de Células Madre , Adulto , Anciano , Animales , Técnicas de Cultivo de Célula , Sistema Nervioso Central/patología , Bandeo Cromosómico , Progresión de la Enfermedad , Femenino , Humanos , Terapia de Inmunosupresión , Péptidos y Proteínas de Señalización Intercelular , Italia , Cariotipificación , Masculino , Ratones , Ratones Desnudos , Persona de Mediana Edad , Proyectos Piloto , Estudios Prospectivos , Médula Espinal/citología
7.
Stem Cell Res ; 81: 103544, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39260069

RESUMEN

Smith-Magenis syndrome (SMS) is a complex neurodevelopmental disorder with a birth incidence of 1:25,000. SMS is caused by haploinsufficiency of the retinoic acid-induced retinoic acid1 (RAI1) gene, determined by an interstitial deletion of âˆ¼ 3.7 Mb (17p11.2, including the RAI1 gene) in 90 % of cases and a mutation on the RAI1 gene in only 10 % of cases. We generated and characterized a human pluripotent stem cell line (hIPSCs) derived from primary fibroblasts of a 17-year-old woman carrying a 17p11.2 deletion including the RAI1 gene.

8.
Expert Opin Biol Ther ; 24(9): 933-954, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39162129

RESUMEN

INTRODUCTION: Cell therapy development represents a critical challenge in amyotrophic lateral sclerosis (ALS) research. Despite more than 20 years of basic and clinical research, no definitive safety and efficacy results of cell-based therapies for ALS have been published. AREAS COVERED: This review summarizes advances using stem cells (SCs) in pre-clinical studies to promote clinical translation and in clinical trials to treat ALS. New technologies have been developed and new experimental in vitro and animal models are now available to facilitate pre-clinical research in this field and to determine the most promising approaches to pursue in patients. New clinical trial designs aimed at developing personalized SC-based treatment with biological endpoints are being defined. EXPERT OPINION: Knowledge of the basic biology of ALS and on the use of SCs to study and potentially treat ALS continues to grow. However, a consensus has yet to emerge on how best to translate these results into therapeutic applications. The selection and follow-up of patients should be based on clinical, biological, and molecular criteria. Planning of SC-based clinical trials should be coordinated with patient profiling genetically and molecularly to achieve personalized treatment. Much work within basic and clinical research is still needed to successfully transition SC therapy in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Trasplante de Células Madre , Esclerosis Amiotrófica Lateral/terapia , Esclerosis Amiotrófica Lateral/genética , Humanos , Animales , Modelos Animales de Enfermedad , Ensayos Clínicos como Asunto
9.
Stem Cell Res ; 78: 103468, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38852424

RESUMEN

Hypomyelinating leukodystrophies (HLD) are a group of heterogeneous genetic disorders characterized by a deficit in myelin deposition during brain development. Specifically, 4H-Leukodystrophy is a recessive disease due to biallelic mutations in the POLR3A gene, which encodes one of the subunits forming the catalytic core of RNA polymerase III (PolIII). The disease also presents non-neurological signs such as hypodontia and hypogonadotropic hypogonadism. Here, we report the generation of a human induced pluripotent stem cell (hiPSC) line from fibroblasts of the first identified carrier of the biallelic POLR3A variants c.1802 T > A and c.4072G > A.


Asunto(s)
Células Madre Pluripotentes Inducidas , ARN Polimerasa III , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , ARN Polimerasa III/genética , ARN Polimerasa III/metabolismo , Línea Celular , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/patología , Masculino , Alelos
10.
Cell Mol Life Sci ; 69(7): 1193-210, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22076651

RESUMEN

Cell therapy is reaching the stage of phase I clinical trials for post-traumatic, post-ischemic, or neurodegenerative disorders, and the selection of the appropriate cell source is essential. In order to assess the capacity of different human neural stem cell lines (hNSC) to contribute to neural tissue regeneration and to reduce the local inflammation after an acute injury, we transplanted GMP-grade non-immortalized hNSCs and v-myc (v-IhNSC), c-myc T58A (T-IhNSC) immortalized cells into the corpus callosum of adult rats after 5 days from focal demyelination induced by lysophosphatidylcholine. At 15 days from transplantation, hNSC and T-IhNSC migrated to the lesioned area where they promoted endogenous remyelination and differentiated into mature oligodendrocytes, while the all three cell lines were able to integrate in the SVZ. Moreover, where demyelination was accompanied by an inflammatory reaction, a significant reduction of microglial cells' activation was observed. This effect correlated with a differential migratory pattern of transplanted hNSC and IhNSC, significantly enhanced in the former, thus suggesting a specific NSC-mediated immunomodulatory effect on the local inflammation. We provide evidence that, in the subacute phase of a demyelination injury, different human immortalized and non-immortalized NSC lines, all sharing homing to the stem niche, display a differential pathotropism, both through cell-autonomous and non-cell autonomous effects. Overall, these findings promote IhNSC as an inexhaustible cell source for large-scale preclinical studies and non-immortalized GMP grade hNSC lines as an efficacious, safe, and reliable therapeutic tool for future clinical applications.


Asunto(s)
Enfermedades Desmielinizantes/metabolismo , Células-Madre Neurales/metabolismo , Animales , Línea Celular , Supervivencia Celular , Trasplante de Células , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Células-Madre Neurales/citología , Fenotipo , Ratas
11.
Stem Cell Res ; 67: 103023, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36638628

RESUMEN

Familial Hypocalciuric Hypercalcemia (FHH1) is a rare autosomal dominant disease with low penetrance, caused by inactivating mutations of the calcium-sensing receptor (CaSR) gene, characterized by significant hypercalcemia, inappropriately normal serum PTH levels and a low urinary calcium level. Human induced pluripotent stem cells (hiPSCs) from a patient carrying a previously identified heterozygous mutation, a p.T972M amino acid substitution in cytoplasmic tail of CasR, were produced using a virus, xeno-free and non-integrative protocol.


Asunto(s)
Hipercalcemia , Células Madre Pluripotentes Inducidas , Humanos , Mutación Puntual , Receptores Sensibles al Calcio/genética , Receptores Sensibles al Calcio/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Hipercalcemia/genética , Mutación , Calcio
12.
Cell Stem Cell ; 30(12): 1597-1609.e8, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-38016468

RESUMEN

We report the analysis of 1 year of data from the first cohort of 15 patients enrolled in an open-label, first-in-human, dose-escalation phase I study (ClinicalTrials.gov: NCT03282760, EudraCT2015-004855-37) to determine the feasibility, safety, and tolerability of the transplantation of allogeneic human neural stem/progenitor cells (hNSCs) for the treatment of secondary progressive multiple sclerosis. Participants were treated with hNSCs delivered via intracerebroventricular injection in combination with an immunosuppressive regimen. No treatment-related deaths nor serious adverse events (AEs) were observed. All participants displayed stability of clinical and laboratory outcomes, as well as lesion load and brain activity (MRI), compared with the study entry. Longitudinal metabolomics and lipidomics of biological fluids identified time- and dose-dependent responses with increased levels of acyl-carnitines and fatty acids in the cerebrospinal fluid (CSF). The absence of AEs and the stability of functional and structural outcomes are reassuring and represent a milestone for the safe translation of stem cells into regenerative medicines.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Esclerosis Múltiple Crónica Progresiva , Esclerosis Múltiple , Células-Madre Neurales , Humanos , Esclerosis Múltiple Crónica Progresiva/tratamiento farmacológico , Esclerosis Múltiple/terapia , Trasplante Autólogo
13.
Methods Mol Biol ; 2389: 57-66, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34558001

RESUMEN

NSCs have been demonstrated to be very useful in grafts into the mammalian central nervous system to investigate the exploitation of NSC for the therapy of neurodegenerative disorders in animal models of neurodegenerative diseases. To push cell therapy in CNS on stage of clinical application, it is necessary to establish a continuous and standardized, clinical grade (i.e., produced following the good manufacturing practice guidelines) human neural stem cell lines.In this chapter we will illustrate some of the protocols for the production and characterization routinely used into our GMP "cell factory" for the production of "clinical grade" human neural stem cell lines already in use in clinical trials on neurodegenerative diseases, particularly amyotrophic lateral sclerosis (ALS- Clinicaltrials.gov number NCT01640067) and secondary progressive multiple sclerosis (SPMS- Clinicaltrials.gov number NCT03282760).


Asunto(s)
Células-Madre Neurales , Esclerosis Amiotrófica Lateral/terapia , Animales , Células Cultivadas , Sistema Nervioso Central , Feto , Humanos , Enfermedades Neurodegenerativas , Trasplante de Células Madre
14.
Stem Cell Res ; 63: 102835, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35714448

RESUMEN

Amyotrophic Lateral Sclerosis (ALS) is a fatal disease affecting both upper and lower motoneurons. The transactive response DNA binding protein (TARDBP) gene, encoding for TDP-43, is one of the most commonly mutated gene associated with familial cases of ALS (10%). We generated a human induced pluripotent stem cell (hiPSC) line from the fibroblasts of an asymptomatic subject carrying the TARDBP p.G376D mutation. This mutation is very rare and was described in a large Apulian family, in which all ALS affected members are carriers of the mutation. The subject here described is the first identified asymptomatic carrier of the mutation.


Asunto(s)
Esclerosis Amiotrófica Lateral , Células Madre Pluripotentes Inducidas , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Heterocigoto , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Mutación/genética
15.
Animals (Basel) ; 12(22)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36428378

RESUMEN

Animal models currently used to test the efficacy and safety of cell therapies, mainly murine models, have limitations as molecular, cellular, and physiological mechanisms are often inherently different between species, especially in the brain. Therefore, for clinical translation of cell-based medicinal products, the development of alternative models based on human neural cells may be crucial. We have developed an in vitro model of transplantation into human brain organoids to study the potential of neural stem cells as cell therapeutics and compared these data with standard xenograft studies in the brain of immunodeficient NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice. Neural stem cells showed similar differentiation and proliferation potentials in both human brain organoids and mouse brains. Our results suggest that brain organoids can be informative in the evaluation of cell therapies, helping to reduce the number of animals used for regulatory studies.

16.
Stem Cell Res ; 63: 102846, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35759972

RESUMEN

Mucopolysaccharidosis type II (Hunter Syndrome) is a rare X-linked inherited lysosomal storage disorder presenting a wide genetic heterogeneity. It is due to pathogenic variants in the IDS gene, causing the deficit of the lysosomal hydrolase iduronate 2-sulfatase, degrading the glycosaminoglycans (GAGs) heparan- and dermatan-sulfate. Based on the presence/absence of neurocognitive signs, commonly two forms are recognized, the severe and the attenuate ones. Here we describe a line of induced pluripotent stem cells, generated from dermal fibroblasts, carrying the mutation c.479C>T, and obtained from a patient showing an attenuated phenotype. The line will be useful to study the disease neuropathogenesis.


Asunto(s)
Iduronato Sulfatasa , Células Madre Pluripotentes Inducidas , Mucopolisacaridosis II , Glicosaminoglicanos , Humanos , Iduronato Sulfatasa/genética , Ácido Idurónico , Células Madre Pluripotentes Inducidas/patología , Mucopolisacaridosis II/genética , Mucopolisacaridosis II/patología , Fenotipo
17.
Antioxidants (Basel) ; 11(5)2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35624679

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the loss of the upper and lower motor neurons (MNs). About 10% of patients have a family history (familial, fALS); however, most patients seem to develop the sporadic form of the disease (sALS). SOD1 (Cu/Zn superoxide dismutase-1) is the first studied gene among the ones related to ALS. Mutant SOD1 can adopt multiple misfolded conformation, lose the correct coordination of metal binding, decrease structural stability, and form aggregates. For all these reasons, it is complicated to characterize the conformational alterations of the ALS-associated mutant SOD1, and how they relate to toxicity. In this work, we performed a multilayered study on fibroblasts derived from two ALS patients, namely SOD1L145F and SOD1S135N, carrying the p.L145F and the p.S135N missense variants, respectively. The patients showed diverse symptoms and disease progression in accordance with our bioinformatic analysis, which predicted the different effects of the two mutations in terms of protein structure. Interestingly, both mutations had an effect on the fibroblast energy metabolisms. However, while the SOD1L145F fibroblasts still relied more on oxidative phosphorylation, the SOD1S135N fibroblasts showed a metabolic shift toward glycolysis. Our study suggests that SOD1 mutations might lead to alterations in the energy metabolism.

18.
Cell Death Dis ; 13(11): 981, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36411275

RESUMEN

Smith-Magenis syndrome (SMS) is a neurodevelopmental disorder characterized by cognitive and behavioral symptoms, obesity, and sleep disturbance, and no therapy has been developed to alleviate its symptoms or delay disease onset. SMS occurs due to haploinsufficiency of the retinoic acid-induced-1 (RAI1) gene caused by either chromosomal deletion (SMS-del) or RAI1 missense/nonsense mutation. The molecular mechanisms underlying SMS are unknown. Here, we generated and characterized primary cells derived from four SMS patients (two with SMS-del and two carrying RAI1 point mutations) and four control subjects to investigate the pathogenetic processes underlying SMS. By combining transcriptomic and lipidomic analyses, we found altered expression of lipid and lysosomal genes, deregulation of lipid metabolism, accumulation of lipid droplets, and blocked autophagic flux. We also found that SMS cells exhibited increased cell death associated with the mitochondrial pathology and the production of reactive oxygen species. Treatment with N-acetylcysteine reduced cell death and lipid accumulation, which suggests a causative link between metabolic dyshomeostasis and cell viability. Our results highlight the pathological processes in human SMS cells involving lipid metabolism, autophagy defects and mitochondrial dysfunction and suggest new potential therapeutic targets for patient treatment.


Asunto(s)
Síndrome de Smith-Magenis , Humanos , Síndrome de Smith-Magenis/diagnóstico , Síndrome de Smith-Magenis/genética , Síndrome de Smith-Magenis/patología , Haploinsuficiencia/genética , Metabolismo de los Lípidos/genética , Factores de Transcripción/metabolismo , Transactivadores/metabolismo , Fenotipo , Autofagia/genética , Tretinoina/farmacología , Tretinoina/metabolismo , Lípidos
19.
Neurol Sci ; 32 Suppl 2: S251-3, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21987287

RESUMEN

Bevacizumab has been introduced in the management of high-grade gliomas after preliminary studies that showed an acceptable safety and a marked increase in clinico-radiological responses in comparison with second-line chemotherapy. The objective is to synthetically review the present use of bevacizumab--alone or in combination--in the context of recurrent high-grade glioma and highlight the future developments. The methodology of this study is to analyse and discuss relevant literature studies using bevacizumab in recurrent high-grade glioma. Bevacizumab may be used as single-agent therapy in recurrent high-grade glioma, with good clinico-radiological responses having little effect on survival. The open questions and developments include new MRI criteria for evaluation of response to anti-angiogenic agents, the identification of putative factors predicting response/failure of bevacizumab and the introduction of bevacizumab in first-line management of high-grade glioma.


Asunto(s)
Inhibidores de la Angiogénesis/uso terapéutico , Anticuerpos Monoclonales Humanizados/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Glioma/tratamiento farmacológico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Bevacizumab , Neoplasias Encefálicas/patología , Glioma/patología , Humanos , Retratamiento
20.
Stem Cell Res ; 53: 102356, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34087986

RESUMEN

Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative condition with phenotypic and genetic heterogeneity. It is characterized by the selective vulnerability and the progressive loss of the neural population. Here, an induced pluripotent stem cell (iPSC) line was generated from dermal fibroblasts of an individual carrying the p.G376D mutation in the TDP-43 protein. Fibroblasts were reprogrammed using non-integrating episomal plasmids. There were no karyotype abnormalities, and iPSCs successfully differentiated into all three germ layers. This cell line may prove useful in the study of the pathogenic mechanisms that underpin ALS syndrome.


Asunto(s)
Esclerosis Amiotrófica Lateral , Células Madre Pluripotentes Inducidas , Esclerosis Amiotrófica Lateral/genética , Diferenciación Celular , Línea Celular , Fibroblastos , Humanos , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA