Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 28(2)2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36677679

RESUMEN

Propolis is a resin that is gathered by bees from exudates produced by various plants. Its exact chemical composition depends on the plants available near the hive. Bees use propolis to coat the surfaces of the hive, where it acts as an anti-infective. Regardless of the chemical composition of propolis, it is always anti-protozoal, probably because protozoan parasites, particularly Lotmarium passim, are widespread in bee populations. The protozoa Trypanosoma brucei and T. congolense cause disease in humans and/or animals. The existing drugs for treating these diseases are old and resistance is an increasingly severe problem. The many types of propolis present a rich source of anti-trypanosomal compounds-from a material gathered by bees in an environmentally friendly way. In the current work, red Nigerian propolis from Rivers State, Nigeria was tested against T. brucei and T. congolense and found to be highly active (EC50 1.66 and 4.00 µg/mL, respectively). Four isoflavonoids, vestitol, neovestitol, 7-methylvestitol and medicarpin, were isolated from the propolis. The isolated compounds were also tested against T. brucei and T. congolense, and vestitol displayed the highest activity at 3.86 and 4.36 µg/mL, respectively. Activities against drug-resistant forms of T. brucei and T. congolense were similar to those against wild type.


Asunto(s)
Antiinfecciosos , Própolis , Trypanosoma brucei brucei , Trypanosoma congolense , Tripanosomiasis Africana , Humanos , Animales , Própolis/farmacología , Própolis/química , Nigeria , Tripanosomiasis Africana/tratamiento farmacológico
2.
Int J Mol Sci ; 23(9)2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35563221

RESUMEN

Staphylococcus protein A (SpA) is found in the cell wall of Staphylococcus aureus bacteria. Its ability to bind to the constant Fc regions of antibodies means it is useful for antibody extraction, and further integration with inorganic materials can lead to the development of diagnostics and therapeutics. We have investigated the adsorption of SpA on inorganic surface models such as experimentally relevant negatively charged silica, as well as positively charged and neutral surfaces, by use of fully atomistic molecular dynamics simulations. We have found that SpA, which is itself negatively charged at pH7, is able to adsorb on all our surface models. However, adsorption on charged surfaces is more specific in terms of protein orientation compared to a neutral Au (111) surface, while the protein structure is generally well maintained in all cases. The results indicate that SpA adsorption is optimal on the siloxide-rich silica surface, which is negative at pH7 since this keeps the Fc binding regions free to interact with other species in solution. Due to the dominant role of electrostatics, the results are transferable to other inorganic materials and pave the way for new diagnostic and therapeutic designs where SpA might be used to conjugate antibodies to nanoparticles.


Asunto(s)
Simulación de Dinámica Molecular , Proteína Estafilocócica A , Adsorción , Anticuerpos , Dióxido de Silicio/química , Staphylococcus , Propiedades de Superficie
3.
Int J Mol Sci ; 23(11)2022 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-35682757

RESUMEN

Antibodies play a crucial role in the immune response, in fighting off pathogens as well as helping create strong immunological memory. Antibody-dependent enhancement (ADE) occurs when non-neutralising antibodies recognise and bind to a pathogen, but are unable to prevent infection, and is widely known and is reported as occurring in infection caused by several viruses. This narrative review explores the ADE phenomenon, its occurrence in viral infections and evaluates its role in infection by SARS-CoV-2 virus, which causes coronavirus disease 2019 (COVID-19). As of yet, there is no clear evidence of ADE in SARS-CoV-2, though this area is still subject to further study.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales/uso terapéutico , Acrecentamiento Dependiente de Anticuerpo , Humanos
4.
Molecules ; 27(5)2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35268726

RESUMEN

Profiling a propolis sample from Papua New Guinea (PNG) using high-resolution mass spectrometry indicated that it contained several triterpenoids. Further fractionation by column chromatography and medium-pressure liquid chromatography (MPLC) followed by nuclear magnetic resonance spectroscopy (NMR) identified 12 triterpenoids. Five of these were obtained pure and the others as mixtures of two or three compounds. The compounds identified were: mangiferonic acid, ambonic acid, isomangiferolic acid, ambolic acid, 27-hydroxyisomangiferolic acid, cycloartenol, cycloeucalenol, 24-methylenecycloartenol, 20-hydroxybetulin, betulin, betulinic acid and madecassic acid. The fractions from the propolis and the purified compounds were tested in vitro against Crithidia fasciculata, Trypanosoma congolense, drug-resistant Trypanosoma congolense, Trypanosoma b. brucei and multidrug-resistant Trypanosoma b. brucei (B48). They were also assayed for their toxicity against U947 cells. The compounds and fractions displayed moderate to high activity against parasitic protozoa but only low cytotoxicity against the mammalian cells. The most active isolated compound, 20-hydroxybetulin, was found to be trypanostatic when different concentrations were tested against T. b. brucei growth.


Asunto(s)
Própolis
5.
Curr Opin Colloid Interface Sci ; 54: 101461, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33907504

RESUMEN

Nanoparticles are small particles sized 1-100 nm, which have a large surface-to-volume ratio, allowing efficient adsorption of drugs, proteins, and other chemical compounds. Consequently, functionalized nanoparticles have potential diagnostic and therapeutic applications. A variety of nanoparticles have been studied, including those constructed from inorganic materials, biopolymers, and lipids. In this review, we focus on recent work targeting the severe acute respiratory syndrome coronavirus 2 virus that causes coronavirus disease (COVID-19). Understanding the interactions between coronavirus-specific proteins (such as the spike protein and its host cell receptor angiotensin-converting enzyme 2) with different nanoparticles paves the way to the development of new therapeutics and diagnostics that are urgently needed for the fight against COVID-19, and indeed for related future viral threats that may emerge.

6.
J Liposome Res ; 31(2): 195-202, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32396752

RESUMEN

Niosome nanoparticles can be prepared using different methods, each of which can affect the size and homogeneity of the prepared particles. The aim of this study was to establish if the method of preparation impacted on the prepared vesicles when loaded with a model protein and the type of immune responses induced to the vaccine antigen. Niosomes were prepared using both the traditional thin film hydration (TFH) technique and the microfluidic mixing (MM) technique. Influenza antigen was then entrapped in the niosomes and formulations tested for their ability to induce in vivo immune responses in immunised BALB/c mice. Niosomes prepared by MM had a mean size of 157 ± 1.8 nm and were significantly more uniform compared with the niosomes prepared using TFH (mean size 388 ± 10 nm). Niosomes play a key role as an adjuvant to help raise high antibody immune responses. This was confirmed in this study since animals treated with both types of niosomes and antigen were more responsive than unentrapped (free) antigen. Cytokine analysis showed that the TFH niosomes induced a Th1 immune response by raising IgG2a and high levels of IFN-É£, while the MM niosomes induced a Th2 immune response by inducing IgG1 (p < .05). These results confirmed that the method of preparation of the niosomes nanoparticles induced different immune responses and the average particle size of the niosomes differed depending on the method of manufacture. This indicates that particle size and uniformity are of importance and should be taken into consideration when designing an oral based delivery system for vaccine delivery.


Asunto(s)
Liposomas , Tensoactivos , Animales , Sistemas de Liberación de Medicamentos , Inmunidad , Ratones , Ratones Endogámicos BALB C , Tamaño de la Partícula
7.
Nanotechnology ; 31(19): 195101, 2020 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-31958777

RESUMEN

Natural products have been successfully used to treat various ailments since ancient times and currently several anticancer agents based on natural products are used as the main therapy to treat cancer patients, or as a complimentary treatment to chemotherapy or radiation. Balanocarpol, which is a promising natural product that has been isolated from Hopea dryobalanoides, has been studied as a potential anticancer agent but its application is limited due to its high toxicity, low water solubility, and poor bioavailability. Therefore, the aim of this study is to improve the characteristics of balanocarpol and increase its anticancer activity through its encapsulation in a bilayer structure of a lipid-based nanoparticle drug delivery system where the application of nanotechnology can help improve the limitations of balanocarpol. The compound was first extracted and isolated from H. dryobalanoides. Niosome nanoparticles composed of Span 80 (SP80) and cholesterol were formulated through an innovative microfluidic mixing method for the encapsulation and delivery of balanocarpol. The prepared particles were spherical, small, and uniform with an average particles size and polydispersity index ∼175 nm and 0.088, respectively. The encapsulation of balanocarpol into the SP80 niosomes resulted in an encapsulation efficiency of ∼40%. The niosomes formulation loaded with balanocarpol showed a superior anticancer effect over the free compound when tested in vitro on human ovarian carcinoma (A2780) and human breast carcinoma (ZR-75-1). This is the first study to report the use of SP80 niosomes for the successful encapsulation and delivery of balanocarpol into cancer cells.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Dipterocarpaceae/química , Neoplasias Ováricas/tratamiento farmacológico , Polifenoles/aislamiento & purificación , Polifenoles/farmacología , Cápsulas , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Colesterol/química , Femenino , Hexosas/química , Humanos , Liposomas , Extractos Vegetales/química , Polifenoles/química
8.
J Liposome Res ; 29(3): 229-238, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30296860

RESUMEN

RNA interference is an effective and naturally occurring post-transcriptional gene regulatory mechanism. This mechanism involves the degradation of a target messenger RNA (mRNA) through the introduction of short interfering RNA (siRNA) that is complementary to the target mRNA. The application of siRNA-based therapeutics is limited by the development of an effective delivery system, as naked siRNA is unstable and cannot penetrate the cell membrane. In this study, we investigated the use of cationic niosomes (CN) prepared by microfluidic mixing for siRNA delivery. In an in vitro model, these vesicles were able to deliver anti-luciferase siRNA and effectively suppress luciferase expression in B16-F10 mouse melanoma cells. More importantly, in an in vivo mouse model, intratumoral administration of CN-carrying anti-luciferase siRNA led to significant suppression of luciferase expression compared with naked siRNA. Thus, we have established a novel and effective system for the delivery of siRNA both in vitro and in vivo, which shows high potential for future application of gene therapeutics.


Asunto(s)
Técnicas de Silenciamiento del Gen/métodos , Liposomas/química , Nanocápsulas/química , ARN Interferente Pequeño/administración & dosificación , Tensoactivos/química , Animales , Línea Celular Tumoral , Supervivencia Celular , Femenino , Silenciador del Gen , Técnicas de Transferencia de Gen , Luciferasas/genética , Luciferasas/metabolismo , Melanoma Experimental , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Prueba de Estudio Conceptual , ARN Interferente Pequeño/metabolismo
9.
J Mol Recognit ; 30(4)2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27862476

RESUMEN

Monoclonal antibodies have revolutionized the biomedical field through their ubiquitous utilization in different diagnostics and therapeutic applications. Despite this widespread use, their large size and structural complexity have limited their versatility in specific applications. The antibody variable region that is responsible for binding antigen is embodied within domains that can be rescued individually as single-domain antibody (sdAb) fragments. Because of the unique characteristics of sdAbs, such as low molecular weight, high physicochemical stability, and the ability to bind antigens inaccessible to conventional antibodies, they represent a viable alternative to full-length antibodies. Consequently, 149 crystal structures of sdAbs, originating from human (VH), camelids (VHH), or sharks (VNAR), were retrieved from the Protein Data Bank, and their structures were compared. The 3 types of sdAbs displayed complementarity determining regions (CDRs) with different lengths and configurations. CDR3 of the VHH and VNAR domains were dominated by pleated and extended orientations, respectively. Although VNAR showed the smallest average molecular weight and molecular surface area compared with VHH and VH antibodies. However, the solvent accessible surface area measurements of the 3 tested sdAbs types were very similar. All the antihapten VHH antibodies showed pleated CDR3, which were sufficient to create a binding pocket to accommodate haptens (methotrexate and azo dyes) in terms of shape and electrostatic potential. The sdAbs that recognized lysozyme showed more diversity in their CDR3 orientation to enable them to recognize various topographies of lysozyme. Subsequently, the three sdAb classes were different in size and surface area and have shown distinguishable ability to optimize their CDR length and orientation to recognize different antigen classes.


Asunto(s)
Camélidos del Nuevo Mundo/inmunología , Tiburones/inmunología , Anticuerpos de Dominio Único/química , Animales , Sitios de Unión , Regiones Determinantes de Complementariedad/química , Cristalografía por Rayos X , Bases de Datos de Proteínas , Humanos , Modelos Moleculares , Peso Molecular , Estructura Secundaria de Proteína , Especificidad de la Especie
10.
Mol Pharm ; 14(7): 2450-2458, 2017 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-28570823

RESUMEN

Small interfering RNAs (siRNA) have a broad potential as therapeutic agents to reversibly silence any target gene of interest. The clinical application of siRNA requires the use of safe and effective delivery systems. In this study, we investigated the use of nonionic surfactant vesicles (NISV) for the delivery of siRNA. Different types of NISV formulations were synthesized by microfluidic mixing and then evaluated for their physiochemical properties and cytotoxicity. The ability of the NISV to carry and transfect siRNA targeting green fluorescent protein (GFP) into A549 that stably express GFP (copGFP-A549) was evaluated. Flow cytometry and Western blotting were used to study the GFP expression knockdown, and significant knockdown was observed as a result of siRNA delivery to the cells by NISV. This occurred in particular when using Tween 85, which was able to achieve more than 70% GFP knockdown. NISV were thus demonstrated to provide a promising and effective platform for therapeutic delivery of siRNA.


Asunto(s)
Microfluídica/métodos , ARN Interferente Pequeño/administración & dosificación , Tensoactivos/química , Células A549 , Citometría de Flujo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Interferencia de ARN
11.
Nanomedicine ; 10(5): 971-9, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24374362

RESUMEN

Vaccines administered parenterally have been developed against gonadotrophin-releasing hormone (GnRH) for anti-fertility and anti-cancer purposes. The aim of this study was to demonstrate whether mucosal delivery using GnRH immunogens entrapped in lipid nanoparticles (LNP) could induce anti-GnRH antibody titers. Immunogens consisting of KLH (keyhole limpet hemocyanin) conjugated to either GnRH-I or GnRH-III analogues were entrapped in LNP. Loaded non-ionic surfactant vesicles (NISVs) were administered subcutaneously, while nasal delivery was achieved using NISV in xanthan gum and oral delivery using NISV containing deoxycholate (bilosomes). NISV and bilosomes had similar properties: they were spherical, in the nanometre size range, with a slightly negative zeta potential and surface properties that changed with protein loading and inclusion of xanthan gum. Following immunization in female BALB/c mice, systemic antibody responses were similar for both GnRH-I and GnRH-III immunization. Only nasal delivery proved to be successful in terms of producing systemic and mucosal antibodies. FROM THE CLINICAL EDITOR: The main research question addressed in this study was whether mucosal delivery using gonadotrophin-releasing hormone immunogens entrapped in lipid nanoparticles could induce anti-GnRH antibody titers. Only nasal delivery proved to be successful in terms of producing systemic and mucosal antibodies with this approach.


Asunto(s)
Formación de Anticuerpos/inmunología , Hormona Liberadora de Gonadotropina/química , Hormona Liberadora de Gonadotropina/inmunología , Nanopartículas/administración & dosificación , Nanopartículas/química , Administración a través de la Mucosa , Animales , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Microscopía de Fuerza Atómica , Ácido Pirrolidona Carboxílico/análogos & derivados , Ácido Pirrolidona Carboxílico/química , Ácido Pirrolidona Carboxílico/inmunología
12.
Adv Exp Med Biol ; 753: 467-88, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25091920

RESUMEN

Overpopulation of selected groups of animals is widely recognised as an issue that can have adverse effects on several current global problems, such as animal and human health, conservation and environmental changes. This review will, therefore, focus on recent novel contraception together with future technologies that may provide additional contraceptive methods.


Asunto(s)
Animales Salvajes/fisiología , Fertilidad , Animales , Conservación de los Recursos Naturales
13.
Pharm Biol ; 52(8): 983-7, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24597622

RESUMEN

CONTEXT: Trypanosoma brucei brucei (T.b. brucei) infection causes death in cattle, while the current treatments have serious toxicity problems. However, natural products can be used to overcome the problems associated with parasitic diseases including T.b. brucei. OBJECTIVE: Artemisia elegantissima Pamp (Asteraceae) was evaluated phytochemically for its constituents and antitrypanosomal potential against T.b. brucei for the first time. Scopoletin isolated from A. elegantissima has shown better potential then the standard drug suramin, used against T.b. brucei. MATERIALS AND METHODS: The ethanol extract of the aerial parts of A. elegantissima was fractionated by column and preparative thin-layer chromatography into six fractions (A-F) yielding 13 compounds, these were evaluated for their antitrypanosomal activity against T.b. brucei at different concentrations. RESULTS: Thirteen compounds were isolated from A. elegantissima: (Z)-p-hydroxy cinnamic acid, stigmasterol, ß-sitosterol, betulinic acid, bis-dracunculin, dracunculin, scopoletin, apigenin, dihydroluteolin, scoparol, nepetin, bonanzin, and 3',4'-dihydroxy bonanzin. The fractions D-F were found to be active at the concentration of 20 µg/ml and three compounds isolated from these fractions, scopoletin (MIC ≤0.19 µg/ml), 3',4'-dihydroxy bonanzin (MIC = 6.25 µg/ml) and bonanzin (MIC = 20 µg/ml), were found to be highly active. DISCUSSION AND CONCLUSION: Artemisia elegantissima was phytochemically and biologically explored for its antitrypanosomal potential against T.b. brucei. The number and orientation of phenolic hydroxyl groups play an important role in the antitrypanosomal potential of coumarins and flavonoids. The compounds 3',4'-dihydroxy bonanzin and scopoletin with low MIC values, hold potential for use as antitrypanosomal drug leads.


Asunto(s)
Artemisia , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Tripanocidas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Animales , Fitoquímicos/aislamiento & purificación , Componentes Aéreos de las Plantas , Extractos Vegetales/aislamiento & purificación , Ovinos , Tripanocidas/aislamiento & purificación , Trypanosoma brucei brucei/aislamiento & purificación , Trypanosoma brucei brucei/fisiología
14.
Sci Rep ; 14(1): 14832, 2024 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937649

RESUMEN

The structures of the Fc base of various IgG antibodies have been examined with a view to understanding how this region can be used to conjugate IgG to nanoparticles. The base structure is found to be largely consistent across a range of species and subtypes, comprising a hydrophobic region surrounded by hydrophilic residues, some of which are charged at physiological conditions. In addition, atomistic Molecular Dynamics simulations were performed to explore how model nanoparticles interact with the base using neutral and negatively charged gold nanoparticles. Both types of nanoparticle interacted readily with the base, leading to an adaptation of the antibody base surface to enhance the interactions. Furthermore, these interactions left the rest of the domain at the base of the Fc region structurally intact. This implies that coupling nanoparticles to the base of an IgG molecule is both feasible and desirable, since it leaves the antibody free to interact with its surroundings so that antigen-binding functionality can be retained. These results will therefore help guide future attempts to develop new nanotechnologies that exploit the unique properties of both antibodies and nanoparticles.


Asunto(s)
Oro , Fragmentos Fc de Inmunoglobulinas , Inmunoglobulina G , Nanopartículas del Metal , Simulación de Dinámica Molecular , Inmunoglobulina G/química , Inmunoglobulina G/inmunología , Fragmentos Fc de Inmunoglobulinas/química , Oro/química , Nanopartículas del Metal/química , Humanos , Nanopartículas/química , Interacciones Hidrofóbicas e Hidrofílicas , Animales
15.
BMC Immunol ; 14 Suppl 1: S10, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23458379

RESUMEN

The proteoliposome derived from Vibrio cholerae O1 (PLc) is a nanoscaled structure obtained by a detergent extraction process. Intranasal (i.n) administration of PLc was immunogenic at mucosal and systemic level vs. V. cholerae; however the adjuvant potential of this structure for non-cholera antigens has not been proven yet. The aim of this work was to evaluate the effect of coadministering PLc with the Vi polysaccharide antigen (Poli Vi) of S. Typhi by the i.n route. The results showed that Poli Vi coadministered with PLc (PLc+Poli Vi) induce a higher IgA response in saliva (p<0.01) and faeces (p<0.01) than Poli Vi administered alone. Likewise, the IgG response in sera was higher in animals immunised with PLc+Poli Vi (p<0.01). Furthermore, IgG induced in sera of mice immunised with PLc+Poli Vi was similar (p>0.05) to that induced in a group of mice immunised by the parenteral route with the Cuban anti-typhoid vaccine vax-TyVi, although this vaccine did not induce a mucosal response. In conclusion, this work demonstrates that PLc can be used as a mucosal adjuvant to potentiate the immune response against a polysaccharide antigen like Poli Vi.


Asunto(s)
Adyuvantes Inmunológicos , Polisacáridos Bacterianos/inmunología , Proteolípidos/inmunología , Salmonella typhi/inmunología , Fiebre Tifoidea/inmunología , Vacunas Tifoides-Paratifoides/inmunología , Vibrio cholerae O1/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Administración Intranasal , Animales , Anticuerpos Antibacterianos/sangre , Anticuerpos Antibacterianos/inmunología , Heces , Femenino , Inmunoglobulina A/inmunología , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Ratones , Ratones Endogámicos BALB C , Polisacáridos Bacterianos/administración & dosificación , Proteolípidos/administración & dosificación , Saliva/inmunología , Fiebre Tifoidea/prevención & control , Vacunas Tifoides-Paratifoides/administración & dosificación
16.
ACS Omega ; 8(3): 3470-3477, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36713729

RESUMEN

Understanding the binding of chitosan oligomers to the surface of a chitin nanocrystal is important for improving the enzymatic deacetylation of chitin and for the design of chitin/chitosan composite films. Here, we study the binding of several chito-oligomers to the (100) surface of an α-chitin crystal using molecular dynamics (MD), steered MD, and umbrella sampling. The convergence of the free energy was carefully considered and yielded a binding energies of -12.5 and -2 kcal mol-1 for 6-monomer-long chitin and uncharged chitosan oligomers, respectively. We also found that the results for the umbrella sampling were consistent with the force profile from the steered MD and with classical MD simulations of the adsorption process. Our results give insight into the molecular-scale interactions, which can be helpful for the design of new chitin composite films. Furthermore, the free energy curves we present can be used to validate coarse-grained models for chitin and chitosan, which are necessary to study the self-assembly of chitin crystals due to the long time scale of the process.

17.
Int J Pharm X ; 4: 100137, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36386005

RESUMEN

Lipid nanoparticles have gained much attention due to their potential as drug delivery systems. They are safe, effective, and be targeted to particular tissues to deliver their payload. Niosomes are one type of lipid nanoparticles that comprise non-ionic surfactants which have proven to be effective due to their stability and biocompatibility. Different manufacturing processes have been reported for niosome preparation, but many of them are not scalable or reproducible for pharmaceutical use. In this study, microfluidic mixing was used to prepare niosomes with different lipid compositions by changing the type of non-ionic surfactant. Niosomes were evaluated for their physicochemical characteristics, morphology, encapsulation efficacy, release profiles of atenolol as a model hydrophilic compound, and cytotoxic activities. Microfluidic mixing allows for particle self-assembly and drug loading in a single step, without the need for post-preparation size reduction. Depending on the lipid composition, the empty particles were <90 nm in size with a uniform distribution. A slight but not significant increase in these values was observed when loading atenolol in most of the prepared formulations. All formulations were spherical and achieved variable levels of atenolol encapsulation. Atenolol release was slow and followed the Korsmeyer-Peppas model regardless of the surfactant type or the percentage of cholesterol used.

18.
Eur J Pharm Biopharm ; 171: 11-18, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34990784

RESUMEN

In this study, the use of a microwave reactor, which allowed high input of energy into a pressurised system in a short period of time, was investigated for preparation of lipid nanoparticles (LNPs). The aim was to optimise the formulation process by reducing manufacturing time. Two types of LNPs were prepared; non-ionic surfactant vesicles (NISV) and bilosomes (modified NISV incorporating bile salts), with a model antigen (tetanus toxoid, TT) and the immune response induced after mucosal (nasal and oral, respectively) administration was assessed. The TT loaded LNPs were characterised in terms of particle size, size distribution, morphology, and entrapment efficiency. Immunisation was evaluated by lethal challenge with tetanus toxin in an animal model. The efficiency of vaccination was evaluated by measuring the anti-TT IgG antibody levels in the vaccinated animals. Bilosomes formed by this method showed an immunogen entrapment efficiency of ∼30% which was significantly (p < 0.05) higher than entrapment efficiency in the NISV. The percentage of animals that survived when challenged with tetanus toxin correlated with the level of IgG determined in the serum of mice immunised with LNPs by the mucosal route. Moreover, there were significant (p < 0.05) differences between orally and nasally immunised groups. Animal groups immunised bilosomes via the oral route showed the highest level of IgG (1.2 ± 0.13) compared to the positive control, LN + Xn, and no immunised group. Similarly, groups immunised via the nasal route showed significantly (p < 0.0001) higher titres compared with the control group. Mucosal TT was capable of inducing systemic specific IgG anti-TT responses that were higher than the parenteral vaccine.


Asunto(s)
Portadores de Fármacos , Liposomas , Membrana Mucosa/metabolismo , Nanopartículas , Toxoide Tetánico/farmacocinética , Administración Intranasal , Administración Oral , Animales , Inmunización , Inmunoglobulina G/inmunología , Ratones , Microondas , Modelos Animales , Toxoide Tetánico/administración & dosificación , Toxoide Tetánico/química , Toxoide Tetánico/inmunología
19.
Pharmaceutics ; 14(2)2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35214171

RESUMEN

The formation of a protein layer "corona" on the nanoparticle surface upon entry into a biological environment was shown to strongly influence the interactions with cells, especially affecting the uptake of nanomedicines. In this work, we present the impact of the protein corona on the uptake of PEGylated zein micelles by cancer cells, macrophages, and dendritic cells. Zein was successfully conjugated with poly(ethylene glycol) (PEG) of varying chain lengths (5K and 10K) and assembled into micelles. Our results demonstrate that PEGylation conferred stealth effects to the zein micelles. The presence of human plasma did not impact the uptake levels of the micelles by melanoma cancer cells, regardless of the PEG chain length used. In contrast, it decreased the uptake by macrophages and dendritic cells. These results therefore make PEGylated zein micelles promising as potential drug delivery systems for cancer therapy.

20.
Front Mol Biosci ; 8: 633526, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33869281

RESUMEN

Antibodies are well known for their high specificity that has enabled them to be of significant use in both therapeutic and diagnostic applications. Antibodies can recognize different antigens, including proteins, carbohydrates, peptides, nucleic acids, lipids, and small molecular weight haptens that are abundantly available as hormones, pharmaceuticals, and pesticides. Here we focus on a structural analysis of hapten-antibody couples and identify potential structural movements originating from the hapten binding by comparison with unbound antibody, utilizing 40 crystal structures from the Protein Data Bank. Our analysis reveals three binding surface trends; S1 where a pocket forms to accommodate the hapten, S2 where a pocket is removed when the hapten binds, and S3 where no pockets changes are found. S1 and S2 are expected for induced-fit binding, whereas S3 indicates that a pre-existing population of optimal binding antibody conformation exists. The structural analysis reveals four classifications of structural reorganization, some of which correlate to S2 but not to the other binding surface changes. These observations demonstrate the complexity of the antibody-antigen interaction, where structural changes can be restricted to the binding sites, or extend through the constant domains to propagate structural changes. This highlights the importance of structural analysis to ensure successful and compatible transformation of small antibody fragments at the early discovery stage into full antibodies during the subsequent development stages, where long-range structural changes are required for an Fc effector response.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA