Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 60(4): 611-25, 2015 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-26549683

RESUMEN

The integrity of chromatin, which provides a dynamic template for all DNA-related processes in eukaryotes, is maintained through replication-dependent and -independent assembly pathways. To address the role of histone deposition in the absence of DNA replication, we deleted the H3.3 chaperone Hira in developing mouse oocytes. We show that chromatin of non-replicative developing oocytes is dynamic and that lack of continuous H3.3/H4 deposition alters chromatin structure, resulting in increased DNase I sensitivity, the accumulation of DNA damage, and a severe fertility phenotype. On the molecular level, abnormal chromatin structure leads to a dramatic decrease in the dynamic range of gene expression, the appearance of spurious transcripts, and inefficient de novo DNA methylation. Our study thus unequivocally shows the importance of continuous histone replacement and chromatin homeostasis for transcriptional regulation and normal developmental progression in a non-replicative system in vivo.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Oogénesis , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Metilación de ADN , Femenino , Fertilización , Regulación de la Expresión Génica , Ratones , Oocitos/metabolismo , Transcripción Genética
2.
Trends Genet ; 27(4): 132-40, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21334089

RESUMEN

Males and females display differences in physiology, behaviour and susceptibility to many diseases. Genome-wide transcription profiling studies have uncovered large-scale sex differences in autosomal gene expression in somatic tissues that are thought to underlie such 'sexual dimorphisms'. Because males and females differ genetically mainly in their sex chromosome complement, most sex differences can be traced back to the X and Y chromosomes. Although sex hormones are usually considered the main architects of sexual dimorphisms, recent studies have demonstrated that sex chromosomes can also induce sex differences in somatic gene expression in the absence of hormonal differences. The recent discovery of epigenetic sex differences that are not hormone-induced brings us closer to understanding differences in autosomal gene expression. In this review, we discuss the insights gained from these findings and the mechanisms by which X and Y chromosomes might induce epigenetic sex differences.


Asunto(s)
Epigénesis Genética , Cromosomas Sexuales , Aneuploidia , Animales , Humanos , Caracteres Sexuales , Transcripción Genética
3.
PLoS Genet ; 7(3): e1001354, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21483810

RESUMEN

Methylation of histone H3 lysine 4 (H3K4me) is an evolutionarily conserved modification whose role in the regulation of gene expression has been extensively studied. In contrast, the function of H3K4 acetylation (H3K4ac) has received little attention because of a lack of tools to separate its function from that of H3K4me. Here we show that, in addition to being methylated, H3K4 is also acetylated in budding yeast. Genetic studies reveal that the histone acetyltransferases (HATs) Gcn5 and Rtt109 contribute to H3K4 acetylation in vivo. Whilst removal of H3K4ac from euchromatin mainly requires the histone deacetylase (HDAC) Hst1, Sir2 is needed for H3K4 deacetylation in heterochomatin. Using genome-wide chromatin immunoprecipitation (ChIP), we show that H3K4ac is enriched at promoters of actively transcribed genes and located just upstream of H3K4 tri-methylation (H3K4me3), a pattern that has been conserved in human cells. We find that the Set1-containing complex (COMPASS), which promotes H3K4me2 and -me3, also serves to limit the abundance of H3K4ac at gene promoters. In addition, we identify a group of genes that have high levels of H3K4ac in their promoters and are inadequately expressed in H3-K4R, but not in set1Δ mutant strains, suggesting that H3K4ac plays a positive role in transcription. Our results reveal a novel regulatory feature of promoter-proximal chromatin, involving mutually exclusive histone modifications of the same histone residue (H3K4ac and H3K4me).


Asunto(s)
Histonas/metabolismo , Lisina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Acetilación , Eucromatina/genética , Eucromatina/metabolismo , Regulación Enzimológica de la Expresión Génica , Redes Reguladoras de Genes/genética , Heterocromatina/genética , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/genética , Lisina/genética , Metilación , Regiones Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuina 2/genética , Sirtuina 2/metabolismo
4.
Arthritis Res Ther ; 8(3): R68, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16606442

RESUMEN

Systemic lupus erythematosus (SLE) is characterised by the production of autoantibodies against ubiquitous antigens, especially nuclear components. Evidence makes it clear that the development of these autoantibodies is an antigen-driven process and that immune complexes involving DNA-containing antigens play a key role in the disease process. In rodents, DNase I is the major endonuclease present in saliva, urine and plasma, where it catalyses the hydrolysis of DNA, and impaired DNase function has been implicated in the pathogenesis of SLE. In this study we have evaluated the effects of transgenic over-expression of murine DNase I endonucleases in vivo in a mouse model of lupus. We generated transgenic mice having T-cells that express either wild-type DNase I (wt.DNase I) or a mutant DNase I (ash.DNase I), engineered for three new properties - resistance to inhibition by G-actin, resistance to inhibition by physiological saline and hyperactivity compared to wild type. By crossing these transgenic mice with a murine strain that develops SLE we found that, compared to control non-transgenic littermates or wt.DNase I transgenic mice, the ash.DNase I mutant provided significant protection from the development of anti-single-stranded DNA and anti-histone antibodies, but not of renal disease. In summary, this is the first study in vivo to directly test the effects of long-term increased expression of DNase I on the development of SLE. Our results are in line with previous reports on the possible clinical benefits of recombinant DNase I treatment in SLE, and extend them further to the use of engineered DNase I variants with increased activity and resistance to physiological inhibitors.


Asunto(s)
Autoanticuerpos/sangre , ADN de Cadena Simple/inmunología , Histonas/inmunología , Inmunoglobulina G/inmunología , Lupus Eritematoso Sistémico/inmunología , Animales , Anticuerpos Antinucleares/sangre , Cromatina/inmunología , Modelos Animales de Enfermedad , Inmunoglobulina G/sangre , Lupus Eritematoso Sistémico/sangre , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA