Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 63(30): 13911-13923, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39013439

RESUMEN

H3trica is a nonadentate chelating ligand intended for coordinating large radiometal ions, such as those used in nuclear medicine. This chelator, featuring a triaza-18-crown-6 macrocycle with three pendant carboxylic acid functional groups, was synthesized and characterized. Complementary nuclear magnetic resonance (NMR) spectroscopy and high-resolution electrospray-ionization mass spectroscopy (HR-ESI-MS) studies were used to explore the coordination of H3trica with metal ions such as La3+, Y3+ (as a model for Tb3+), and Lu3+ at the bulk scale. Thermodynamic solution studies provided valuable insights, highlighting robust metal complexation of H3trica with La3+, Tb3+, and Lu3+, with the most noteworthy log KML value observed for Tb3+ (log KTbL = 17.08), followed by La3+ (log KLaL = 16.64) and Lu3+ (log KLuL = 16.25). Concentration-dependent radiolabeling studies with [225Ac]Ac3+, [155Tb]Tb3+, and [161Tb]Tb3+ demonstrated rapid complexation (5-30 min) under mild conditions (pH 6-7, 25 °C). Importantly, the radiolabeled complexes exhibited stability during incubation in human serum for one-half-life of the corresponding radiometal. Thus, H3trica emerges as a valuable chelator, demonstrating its potential to coordinate the theranostic couple [225Ac]Ac3+/[155Tb]Tb3+ as well as the powerful terbium quartet ([149/152/155/161Tb]Tb3+) with efficiency and stability.

2.
Inorg Chem ; 62(50): 20593-20607, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-36662237

RESUMEN

H2dedpa-N,N'-pram (H2L1), a new chelator derived from the hexadentate ligand 1,2-bis[[(6-carboxypyridin-2-yl)methyl]amino]ethane (H2dedpa), which incorporates 3-propylamine chains anchored to the secondary amines of the ethylenediamine core of the latter, has emerged as a very promising scaffold for preparing 68Ga- and 64Cu-based positron emission tomography probes. This new platform is cost-effective and easy to prepare, and the two pendant primary amines make it versatile for the preparation of bifunctional chelators by conjugation and/or click chemistry. Reported herein, we have also included the related H2dedpa-N,N'-prpta (H2L2) platform as a simple structural model for its conjugated systems. X-ray crystallography confirmed that the N4O2 coordination sphere provided by the dedpa2- core is maintained at both Ga(III) and Cu(II). The complex formation equilibria were deeply investigated by a thorough multitechnique approach with potentiometric, NMR spectrometric, and UV-vis spectrophotometric titrations, revealing effective chelation. The thermodynamic stability of the Ga(III) complexes at physiological relevant conditions is slightly higher than that of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), the common and clinically approved chelator used in the clinic [pGa = 19.5 (dedpa-N,N'-pram) and 20.8 (dedpa-N,N'-prpta) versus 18.5 (DOTA) at identical conditions], and significantly higher for the Cu(II) complexes [pCu = 21.96 (dedpa-N,N'-pram) and 22.8 (dedpa-N,N'-prpta) versus 16.2 (DOTA)], which are even more stable than that of the parent ligand dedpa2- (pCu = 18.5) and that of 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) (pCu = 18.5). This high stability found for Cu(II) complexes is related to the conversion of the secondary amines of the ethylenediamine core of dedpa2- into tertiary amines, whereby the architecture of the new H2L1 chelator is doubly optimal in the case of this metal ion: high accessibility of the primary amine groups and their incorporation via the secondary amines, which contributes to a significant increase in the stability of the metal complex. Quantitative labeling of both chelators with both radionuclides ([68Ga]Ga3+ and [64Cu]Cu2+) was observed within 15 min at room temperature with concentrations as low as 10-5 M. Furthermore, serum stability studies confirmed a high radiochemical in vitro stability of all systems and therefore confirmed H2L1 as a promising and versatile chelator for further radiopharmaceutical in vivo studies.


Asunto(s)
Radioisótopos de Galio , Tomografía de Emisión de Positrones , Radioisótopos de Galio/química , Ligandos , Tomografía de Emisión de Positrones/métodos , Quelantes/química , Radiofármacos/química , Aminas , Etilenodiaminas
3.
Nucl Med Biol ; 94-95: 81-91, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33607326

RESUMEN

Production of medical radionuclides with ISOL facilities is a unique production method that may provide access to preclinical quantities of some rare and potent radionuclides for nuclear medicine. Particularly attention over the past years was focused on several promising candidates for Targeted Radionuclides Therapy (TRT). With this review, we provide some perspectives of using the TRIUMF ISOL facility (ISAC) to produce medical radionuclides for TRT application and highlight our current effort to collect of 165Er and 155Tb for Auger Therapy and SPECT imaging, respectively.


Asunto(s)
Radioquímica/instrumentación , Radioisótopos/química , Radioisótopos/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA