Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Int Microbiol ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38913231

RESUMEN

Human body odor is a result of the bacterial biotransformation of odorless precursor molecules secreted by the underarm sweat glands. In the human axilla, Staphylococcus hominis is the predominant bacterial species responsible for the biotransformation process of the odorless precursor molecule into the malodorous 3M3SH by two enzymes, a dipeptidase and a specific C-S lyase. The current solutions for malodor, such as deodorants and antiperspirants are known to block the apocrine glands or disrupt the skin microbiota. Additionally, these chemicals endanger both the environment and human health, and their long-term use can influence the function of sweat glands. Therefore, there is a need for the development of alternative, environmentally friendly, and natural solutions for the prevention of human body malodor. In this study, a library of secondary metabolites from various plants was screened to inhibit the C-S lyase, which metabolizes the odorless precursor sweat molecules, through molecular docking and molecular dynamics (MD) simulation. In silico studies revealed that tannic acid had the strongest affinity towards C-S lyase and was stably maintained in the binding pocket of the enzyme during 100-ns MD simulation. We found in the in vitro biotransformation assays that 1 mM tannic acid not only exhibited a significant reduction in malodor formation but also had quite low growth inhibition in S. hominis, indicating the minimum inhibitory effect of tannic acid on the skin microflora. This study paved the way for the development of a promising natural C-S lyase inhibitor to eliminate human body odor and can be used as a natural deodorizing molecule after further in vivo analysis.

2.
Mol Divers ; 27(1): 463-475, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35507211

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been significantly paralyzing the societies, economies and health care systems around the globe. The mutations on the genome of SARS-CoV-2 led to the emergence of new variants, some of which are classified as "variant of concern" due to their increased transmissibility and better viral fitness. The Omicron variant, as the latest variant of concern, dominated the current COVID-19 cases all around the world. Unlike the previous variants of concern, the Omicron variant has 15 mutations on the receptor-binding domain of spike protein and the changes in the key amino acid residues of S protein can enhance the binding ability of the virus to hACE2, resulting in a significant increase in the infectivity of the Omicron variant. Therefore, there is still an urgent need for treatment and prevention of variants of concern, particularly for the Omicron variant. In this study, an in silico drug repurposing was conducted through the molecular docking of 2890 FDA-approved drugs against the mutant S protein of SARS-CoV-2 for Omicron variant. We discovered promising drug candidates for the inhibition of alarming Omicron variant such as quinestrol, adapalene, tamibarotene, and dihydrotachysterol. The stability of ligands complexed with the mutant S protein was confirmed using MD simulations. The lead compounds were further evaluated for their potential use and side effects based on the current literature. Particularly, adapalene, dihydrotachysterol, levocabastine and bexarotene came into prominence due to their non-interference with the normal physiological processes. Therefore, this study suggests that these approved drugs can be considered as drug candidates for further in vitro and in vivo studies to develop new treatment options for the Omicron variant of SARS-CoV-2.


Asunto(s)
Antivirales , COVID-19 , Humanos , Antivirales/farmacología , SARS-CoV-2 , Dihidrotaquisterol , Adapaleno , Reposicionamiento de Medicamentos , Simulación del Acoplamiento Molecular
3.
World J Microbiol Biotechnol ; 39(10): 276, 2023 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-37567959

RESUMEN

The increasing number of life-threatening infections caused by persister bacteria is associated with various issues, including antimicrobial resistance and biofilm formation. Infections due to persister cells are often difficult to suppress without the use of last-resort antibiotics. Throughout the world, bacterial persistence and resistance create an unmet clinical demand for the exploration of newly introduced therapeutic approaches. Mesenchymal stem / stromal cells (MSCs) have an antimicrobial activity to protect against bacterial infections, including those caused by bacterial persisters. MSCs have substantial potential to secrete antimicrobial peptides (AMPs), including cathelicidin, beta-defensins, lipocalin-2, hepcidin, indoleamine 2,3-dioxygenase (IDO), cysteine proteases, and inducible nitric oxide synthases (iNOS). MSCs possess the potential to contribute to innate immunity by regulating the immune response. Recently, MSCs and their secreted components have been reported to improve antimicrobial activity. Bactericidal activity by MSCs and their secretomes has been shown to be mediated in part by the secretion of AMPs. Even though they were discovered more than 80 years ago, therapeutic options for persisters are restricted, and there is an urgent need for alternative treatment regimens. Hence, this review intends to critically assess the current literature on the effects of MSCs and their secretomes on persister bacteria. MSCs and their secretome-based therapies could be preferred as an up-and-coming approach to reinforce the antimicrobial efficiency in persister infections.


Asunto(s)
Infecciones Bacterianas , Tratamiento Basado en Trasplante de Células y Tejidos , Células Madre Mesenquimatosas , Secretoma , Células del Estroma , Péptidos Antimicrobianos/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Infecciones Bacterianas/microbiología , Infecciones Bacterianas/terapia , Humanos , Animales , Células del Estroma/citología , Células del Estroma/metabolismo
4.
Biotechnol Appl Biochem ; 66(4): 517-526, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30932244

RESUMEN

Sch47554 and Sch47555 are two angucyclines with antifungal activities against various yeasts and dermatophytes from Streptomyces sp. SCC-2136. The sch gene cluster contains several putative regulatory genes. Both schA4 and schA21 were predicted as the TetR family transcriptional regulators, whereas schA16 shared significant similarity to the AraC family transcriptional regulators. Although Sch47554 is the major product of Streptomyces sp. SCC-2136, its titer is only 6.72 mg/L. This work aimed to increase the production of this promising antifungal compound by investigating and manipulating the regulatory genes in the Sch47554 biosynthetic pathway. Disruption of schA4 and schA16 led to a significant increase in the production of Sch47554, whereas the titer was dramatically decreased when schA21 was disrupted. Overexpression of these genes gave opposite results. The highest titer of Sch47554 was achieved in Streptomyces sp. SCC-2136/ΔschA4 (27.94 mg/L), which is significantly higher than the wild type. Our results indicate that SchA4 and SchA16 are repressors, whereas SchA21 acts as an activator. This work thus provides an initial understanding of functional roles of regulatory elements in the biosynthesis of Sch47554. Several efficient producing strains of Sch47554 were constructed by disrupting or overexpressing particular regulatory genes, which can be further engineered for industrial production of this medicinally important molecule.


Asunto(s)
Antraquinonas/metabolismo , Antifúngicos/metabolismo , Genes Reguladores/genética , Streptomyces/genética , Antraquinonas/química , Antifúngicos/química , Familia de Multigenes , Streptomyces/metabolismo
5.
Chembiochem ; 19(13): 1424-1432, 2018 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-29799664

RESUMEN

Sch47554 and Sch47555 are antifungal compounds from Streptomyces sp. SCC-2136. The availability of the biosynthetic gene cluster made it possible to track genes that encode biosynthetic enzymes responsible for the structural features of these two angucyclines. Sugar moieties play important roles in the biological activities of many natural products. An investigation into glycosyltransferases (GTs) might potentially help to diversify pharmaceutically significant drugs through combinatorial biosynthesis. Sequence analysis indicates that SchS7 is a putative C-GT, whereas SchS9 and SchS10 are proposed to be O-GTs. In this study, the roles of these three GTs in the biosynthesis of Sch47554 and Sch47555 are characterized. Coexpression of the aglycone and sugar biosynthetic genes with schS7 in Streptomyces lividans K4 resulted in the production of C-glycosylated rabelomycin, which revealed that SchS7 attached a d-amicetose moiety to the aglycone core structure at the C-9 position. Gene inactivation studies revealed that subsequent glycosylation steps took place in a sequential manner, in which SchS9 first attached either an l-aculose or l-amicetose moiety to 4'-OH of the C-glycosylated aglycone, then SchS10 transferred an l-aculose moiety to 3-OH of the angucycline core.


Asunto(s)
Proteínas Bacterianas/metabolismo , Glicosiltransferasas/metabolismo , Antraquinonas/química , Antraquinonas/metabolismo , Proteínas Bacterianas/genética , Benzo(a)Antracenos/química , Benzo(a)Antracenos/metabolismo , Silenciador del Gen , Glicosilación , Glicosiltransferasas/genética , Familia de Multigenes , Streptomyces/enzimología , Streptomyces/genética
6.
Microbiol Resour Announc ; 13(7): e0013924, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38940526

RESUMEN

Here, we report the draft genome sequence of endophytic Pseudomonas sp. 102515 isolated from Taxus chinensis collected from Logan, UT, USA. The genome is composed of 36 contigs and around 4.9 Mbp in size. The GC content is 66% with an N50 length of 918.9 kbp and L50 count of 2.

7.
Probiotics Antimicrob Proteins ; 15(1): 17-29, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-34837166

RESUMEN

The COVID-19 pandemic caused by a novel coronavirus (SARS-CoV-2) is a serious health concern in the twenty-first century for scientists, health workers, and all humans. The absence of specific biotherapeutics requires new strategies to prevent the spread and prophylaxis of the novel virus and its variants. The SARS-CoV-2 virus shows pathogenesis by entering the host cells via spike protein and Angiotensin-Converting Enzyme 2 receptor protein. Thus, the present study aims to compute the binding energies between a wide range of bacteriocins with receptor-binding domain (RBD) on spike proteins of wild type (WT) and beta variant (lineage B.1.351). Molecular docking analyses were performed to evaluate binding energies. Upon achieving the best bio-peptides with the highest docking scores, further molecular dynamics (MD) simulations were performed to validate the structure and interaction stability. Protein-protein docking of the chosen 22 biopeptides with WT-RBD showed docking scores lower than -7.9 kcal/mol. Pediocin PA-1 and salivaricin P showed the lowest (best) docking scores of - 12 kcal/mol. Pediocin PA-1, salivaricin B, and salivaricin P showed a remarkable increase in the double mutant's predicted binding affinity with -13.8 kcal/mol, -13.0 kcal/mol, and -12.5 kcal/mol, respectively. Also, a better predicted binding affinity of pediocin PA-1 and salivaricin B against triple mutant was observed compared to the WT. Thus, pediocin PA-1 binds stronger to mutants of the RBD, particularly to double and triple mutants. Salivaricin B showed a better predicted binding affinity towards triple mutant compared to WT, showing that it might be another bacteriocin with potential activity against the SARS-CoV-2 beta variant. Overall, pediocin PA-1, salivaricin P, and salivaricin B are the most promising candidates for inhibiting SARS-CoV-2 (including lineage B.1.351) entrance into the human cells. These bacteriocins derived from lactic acid bacteria hold promising potential for paving an alternative way for treatment and prophylaxis of WT and beta variants.


Asunto(s)
Bacteriocinas , COVID-19 , Lactobacillales , Humanos , Bacteriocinas/farmacología , SARS-CoV-2/genética , Simulación del Acoplamiento Molecular , Pandemias
8.
Front Immunol ; 14: 1174907, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37575233

RESUMEN

Background: Gut microbiota influence food allergy. We showed that the natural compound berberine reduces IgE and others reported that BBR alters gut microbiota implying a potential role for microbiota changes in BBR function. Objective: We sought to evaluate an oral Berberine-containing natural medicine with a boiled peanut oral immunotherapy (BNP) regimen as a treatment for food allergy using a murine model and to explore the correlation of treatment-induced changes in gut microbiota with therapeutic outcomes. Methods: Peanut-allergic (PA) mice, orally sensitized with roasted peanut and cholera toxin, received oral BNP or control treatments. PA mice received periodic post-therapy roasted peanut exposures. Anaphylaxis was assessed by visualization of symptoms and measurement of body temperature. Histamine and serum peanut-specific IgE levels were measured by ELISA. Splenic IgE+B cells were assessed by flow cytometry. Fecal pellets were used for sequencing of bacterial 16S rDNA by Illumina MiSeq. Sequencing data were analyzed using built-in analysis platforms. Results: BNP treatment regimen induced long-term tolerance to peanut accompanied by profound and sustained reduction of IgE, symptom scores, plasma histamine, body temperature, and number of IgE+ B cells (p <0.001 vs Sham for all). Significant differences were observed for Firmicutes/Bacteroidetes ratio across treatment groups. Bacterial genera positively correlated with post-challenge histamine and PN-IgE included Lachnospiraceae, Ruminococcaceae, and Hydrogenanaerobacterium (all Firmicutes) while Verrucromicrobiacea. Caproiciproducens, Enterobacteriaceae, and Bacteroidales were negatively correlated. Conclusions: BNP is a promising regimen for food allergy treatment and its benefits in a murine model are associated with a distinct microbiota signature.


Asunto(s)
Berberina , Hipersensibilidad a los Alimentos , Microbiota , Hipersensibilidad al Cacahuete , Ratones , Animales , Arachis , Hipersensibilidad al Cacahuete/diagnóstico , Berberina/farmacología , Berberina/uso terapéutico , Histamina , Modelos Animales de Enfermedad , Desensibilización Inmunológica , Inmunoglobulina E
9.
Front Immunol ; 14: 1081121, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36825019

RESUMEN

Introduction: Food allergy is a significant public health problem with limited treatment options. As Food Allergy Herbal Formula 2 (FAHF-2) showed potential as a food allergy treatment, we further developed a purified version named EBF-2 and identified active compounds. We investigated the mechanisms of EBF-2 on IgE-mediated peanut (PN) allergy and its active compound, berberine, on IgE production. Methods: IgE plasma cell line U266 cells were cultured with EBF-2 and FAHF-2, and their effects on IgE production were compared. EBF-2 was evaluated in a murine PN allergy model for its effect on PN-specific IgE production, number of IgE+ plasma cells, and PN anaphylaxis. Effects of berberine on IgE production, the expression of transcription factors, and mitochondrial glucose metabolism in U266 cells were evaluated. Results: EBF-2 dose-dependently suppressed IgE production and was over 16 times more potent than FAHF-2 in IgE suppression in U266 cells. EBF-2 significantly suppressed PN-specific IgE production (70%, p<0.001) and the number of IgE-producing plasma cells in PN allergic mice, accompanied by 100% inhibition of PN-induced anaphylaxis and plasma histamine release (p<0.001) without affecting IgG1 or IgG2a production. Berberine markedly suppressed IgE production, which was associated with suppression of XBP1, BLIMP1, and STAT6 transcription factors and a reduced rate of mitochondrial oxidation in an IgE-producing plasma cell line. Conclusions: EBF-2 and its active compound berberine are potent IgE suppressors, associated with cellular regulation of immunometabolism on IgE plasma cells, and may be a potential therapy for IgE-mediated food allergy and other allergic disorders.


Asunto(s)
Anafilaxia , Berberina , Hipersensibilidad a los Alimentos , Hipersensibilidad al Cacahuete , Ratones , Animales , Inmunoglobulina E , Anafilaxia/prevención & control , Berberina/farmacología , Berberina/uso terapéutico , Interferón gamma/metabolismo , Hipersensibilidad a los Alimentos/tratamiento farmacológico , Inmunoglobulina G , Factores de Transcripción
10.
J Food Biochem ; 46(9): e14219, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35545850

RESUMEN

The current COVID-19 pandemic is severely threatening public healthcare systems around the globe. Some supporting therapies such as remdesivir, favipiravir, and ivermectin are still under the process of a clinical trial, it is thus urgent to find alternative treatment and prevention options for SARS-CoV-2. In this regard, although many natural products have been tested and/or suggested for the treatment and prophylaxis of COVID-19, carotenoids as an important class of natural products were underexplored. The dietary supplementation of some carotenoids was already suggested to be potentially effective in the treatment of COVID-19 due to their strong antioxidant properties. In this study, we performed an in silico screening of common food-derived carotenoids against druggable target proteins of SARS-CoV-2 including main protease, helicase, replication complex, spike protein and its mutants for the recent variants of concern, and ADP-ribose phosphatase. Molecular docking results revealed that some of the carotenoids had low binding energies toward multiple receptors. Particularly, crocin had the strongest binding affinity (-10.5 kcal/mol) toward the replication complex of SARS-CoV-2 and indeed possessed quite low binding energy scores for other targets as well. The stability of crocin in the corresponding receptors was confirmed by molecular dynamics simulations. Our study, therefore, suggests that carotenoids, especially crocin, can be considered an effective alternative therapeutics and a dietary supplement candidate for the prophylaxis and treatment of SARS-CoV-2. PRACTICAL APPLICATIONS: In this study, food-derived carotenoids as dietary supplements have the potential to be used for the prophylaxis and/or treatment of SARS-CoV-2. Using in silico techniques, we aimed at discovering food-derived carotenoids with inhibitory effects against multiple druggable sites of SARS-CoV-2. Molecular docking experiments against main protease, helicase, replication complex, spike protein and its mutants for the recent variants of concern, and ADP-ribose phosphatase resulted in a few carotenoids with multitarget inhibitory effects. Particularly, crocin as one of the main components of saffron exhibited strong binding affinities to the multiple drug targets including main protease, helicase, replication complex, mutant spike protein of lineage B.1.351, and ADP-ribose phosphatase. The stability of the crocin complexed with these drug targets was further confirmed through molecular dynamics simulations. Overall, our study provides the preliminary data for the potential use of food-derived carotenoids, particularly crocin, as dietary supplements in the prevention and treatment of COVID-19.


Asunto(s)
Productos Biológicos , Tratamiento Farmacológico de COVID-19 , Adenosina Difosfato Ribosa , Productos Biológicos/farmacología , Carotenoides/farmacología , Suplementos Dietéticos , Humanos , Simulación del Acoplamiento Molecular , Pandemias , Péptido Hidrolasas/química , Monoéster Fosfórico Hidrolasas , Inhibidores de Proteasas/farmacología , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus
11.
J Biol Eng ; 13: 66, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31388354

RESUMEN

BACKGROUND: Endophytic microorganisms are a rich source of bioactive natural products. They are considered as promising biofertilizers and biocontrol agents due to their growth-promoting interactions with the host plants and their bioactive secondary metabolites that can help manage plant pathogens. Identification of new endophytes may lead to the discovery of novel molecules or provide new strains for production of valuable compounds. RESULTS: In this study, we isolated an endophytic bacterium from the leaves of Taxus chinensis, which was identified as Pseudomonas sp. 102515 based on the 16S rRNA gene sequence and physiological characteristics. Analysis of its secondary metabolites revealed that this endophytic strain produces a major product zeaxanthin diglucoside, a promising antioxidant natural product that belongs to the family of carotenoids. A carotenoid (Pscrt) biosynthetic gene cluster was amplified from this strain, and the functions of PsCrtI and PsCrtY in the biosynthesis of zeaxanthin diglucoside were characterized in Escherichia coli BL21(DE3). The entire Pscrt biosynthetic gene cluster was successfully reconstituted in E. coli BL21(DE3) and Pseudomonas putida KT2440. The production of zeaxanthin diglucoside in Pseudomonas sp. 102515 was improved through the optimization of fermentation conditions such as medium, cultivation temperature and culture time. The highest yield under the optimized conditions reached 206 mg/L. The engineered strain of P. putida KT2440 produced zeaxanthin diglucoside at 121 mg/L in SOC medium supplemented with 0.5% glycerol at 18 °C, while the yield of zeaxanthin diglucoside in E. coli BL21(DE3) was only 2 mg/L. To further enhance the production, we introduced an expression plasmid harboring the Pscrt biosynthetic gene cluster into Pseudomonas sp. 102515. The yield in this engineered strain reached 380 mg/L, 85% higher than the wild type. Through PCR, we also discovered the presence of a turnerbactin biosynthetic gene cluster in Pseudomonas sp. 102515. Because turnerbactin is involved in nitrogen fixation, this endophytic strain might have a role in promoting growth of the host plant. CONCLUSIONS: We isolated and identified an endophytic strain of Pseudomonas from T. chinensis. A zeaxanthin diglucoside biosynthetic gene cluster was discovered and characterized in this bacterium. Through fermentation and genetic engineering, the engineered strain produced zeaxanthin diglucoside at 380 ± 12 mg/L, representing a promising strain for the production of this antioxidant natural product. Additionally, Pseudomonas sp. 102515 might also be utilized as a plant-promoting strain for agricultural applications.

12.
J Biol Eng ; 13: 24, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30949236

RESUMEN

BACKGROUND: Gamma (γ)-Aminobutyric acid (GABA) as a bioactive compound is used extensively in functional foods, pharmaceuticals and agro-industry. It can be biosynthesized via decarboxylation of monosodium glutamate (MSG) or L-glutamic acid (L-Glu) by glutamate decarboxylase (GAD; EC4.1.1.15). GADs have been identified from a variety of microbial sources, such as Escherichia coli and lactic acid bacteria. However, no GADs from Streptomyces have been characterized. The present study is aimed to identify new GADs from Streptomyces strains and establish an efficient bioproduction platform for GABA in E. coli using these enzymes. RESULTS: By sequencing and analyzing the genomes of three Streptomyces strains, three putative GADs were discovered, including StGAD from Streptomyces toxytricini NRRL 15443, SsGAD from Streptomyces sp. MJ654-NF4 and ScGAD from Streptomyces chromofuscus ATCC 49982. The corresponding genes were cloned from these strains and heterologously expressed in E. coli BL21(DE3). The purified GAD proteins showed a similar molecular mass to GadB from E. coli BL21(DE3). The optimal reaction temperature is 37 °C for all three enzymes, while the optimum pH values for StGAD, SsGAD and ScGAD are 5.2, 3.8 and 4.2, respectively. The kinetic parameters including V max , Km, k cat and k cat /Km values were investigated and calculated through in vitro reactions. SsGAD and ScGAD showed high biocatalytic efficiency with k cat /Km values of 0.62 and 1.21 mM- 1·s- 1, respectively. In addition, engineered E. coli strains harboring StGAD, SsGAD and ScGAD were used as whole-cell biocatalysts for production of GABA from L-Glu. E. coli/SsGAD showed the highest capability of GABA production. The cells were repeatedly used for 10 times, with an accumulated yield of 2.771 kg/L and an average molar conversion rate of 67% within 20 h. CONCLUSIONS: Three new GADs have been functionally characterized from Streptomyces, among which two showed higher catalytic efficiency than previously reported GADs. Engineered E. coli harboring SsGAD provides a promising cost-effective bioconversion system for industrial production of GABA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA