Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 111(8): 3062-7, 2014 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-24516132

RESUMEN

Minor class or U12-type splicing is a highly conserved process required to remove a minute fraction of introns from human pre-mRNAs. Defects in this splicing pathway have recently been linked to human disease, including a severe developmental disorder encompassing brain and skeletal abnormalities known as Taybi-Linder syndrome or microcephalic osteodysplastic primordial dwarfism 1, and a hereditary intestinal polyposis condition, Peutz-Jeghers syndrome. Although a key mechanism for regulating gene expression, the impact of impaired U12-type splicing on the transcriptome is unknown. Here, we describe a unique zebrafish mutant, caliban (clbn), with arrested development of the digestive organs caused by an ethylnitrosourea-induced recessive lethal point mutation in the rnpc3 [RNA-binding region (RNP1, RRM) containing 3] gene. rnpc3 encodes the zebrafish ortholog of human RNPC3, also known as the U11/U12 di-snRNP 65-kDa protein, a unique component of the U12-type spliceosome. The biochemical impact of the mutation in clbn is the formation of aberrant U11- and U12-containing small nuclear ribonucleoproteins that impair the efficiency of U12-type splicing. Using RNA sequencing and microarrays, we show that multiple genes involved in various steps of mRNA processing, including transcription, splicing, and nuclear export are disrupted in clbn, either through intron retention or differential gene expression. Thus, clbn provides a useful and specific model of aberrant U12-type splicing in vivo. Analysis of its transcriptome reveals efficient mRNA processing as a critical process for the growth and proliferation of cells during vertebrate development.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Conformación Proteica , Empalme del ARN/fisiología , ARN Nuclear Pequeño/química , Proteínas de Unión al ARN/genética , Empalmosomas/metabolismo , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Secuencia de Bases , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/genética , Intestinos/anomalías , Hígado/anomalías , Análisis por Micromatrices , Datos de Secuencia Molecular , Páncreas/anomalías , Mutación Puntual/genética , Empalme del ARN/genética , Proteínas de Unión al ARN/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ARN , Empalmosomas/genética , Pez Cebra/crecimiento & desarrollo , Proteínas de Pez Cebra/metabolismo
2.
PLoS Genet ; 9(2): e1003279, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23408911

RESUMEN

Ribosome biogenesis underpins cell growth and division. Disruptions in ribosome biogenesis and translation initiation are deleterious to development and underlie a spectrum of diseases known collectively as ribosomopathies. Here, we describe a novel zebrafish mutant, titania (tti(s450)), which harbours a recessive lethal mutation in pwp2h, a gene encoding a protein component of the small subunit processome. The biochemical impacts of this lesion are decreased production of mature 18S rRNA molecules, activation of Tp53, and impaired ribosome biogenesis. In tti(s450), the growth of the endodermal organs, eyes, brain, and craniofacial structures is severely arrested and autophagy is up-regulated, allowing intestinal epithelial cells to evade cell death. Inhibiting autophagy in tti(s450) larvae markedly reduces their lifespan. Somewhat surprisingly, autophagy induction in tti(s450) larvae is independent of the state of the Tor pathway and proceeds unabated in Tp53-mutant larvae. These data demonstrate that autophagy is a survival mechanism invoked in response to ribosomal stress. This response may be of relevance to therapeutic strategies aimed at killing cancer cells by targeting ribosome biogenesis. In certain contexts, these treatments may promote autophagy and contribute to cancer cells evading cell death.


Asunto(s)
Autofagia/genética , Proteínas de Ciclo Celular , Ribosomas , Serina-Treonina Quinasas TOR , Proteína p53 Supresora de Tumor , Proteínas de Pez Cebra , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Supervivencia Celular , Genes Letales/genética , Mutación , Biosíntesis de Proteínas/genética , ARN Ribosómico 18S/genética , ARN Ribosómico 18S/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Proteína p53 Supresora de Tumor/genética , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
3.
Nature ; 442(7103): 688-91, 2006 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-16799568

RESUMEN

Endodermal organs such as the lung, liver and pancreas emerge at precise locations along the primitive gut tube. Although several signalling pathways have been implicated in liver formation, so far no single gene has been identified that exclusively regulates liver specification. In zebrafish, the onset of liver specification is marked by the localized endodermal expression of hhex and prox1 at 22 hours post fertilization. Here we used a screen for mutations affecting endodermal organ morphogenesis to identify a unique phenotype: prometheus (prt) mutants exhibit profound, though transient, defects in liver specification. Positional cloning reveals that prt encodes a previously unidentified Wnt2b homologue. prt/wnt2bb is expressed in restricted bilateral domains in the lateral plate mesoderm directly adjacent to the liver-forming endoderm. Mosaic analyses show the requirement for Prt/Wnt2bb in the lateral plate mesoderm, in agreement with the inductive properties of Wnt signalling. Taken together, these data reveal an unexpected positive role for Wnt signalling in liver specification, and indicate a possible common theme for the localized formation of endodermal organs along the gut tube.


Asunto(s)
Glicoproteínas/metabolismo , Hígado/embriología , Mesodermo/metabolismo , Transducción de Señal , Proteínas Wnt/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Diferenciación Celular , Trasplante de Células , Glicoproteínas/genética , Hepatocitos/citología , Hígado/citología , Hígado/metabolismo , Datos de Secuencia Molecular , Mutación/genética , Proteínas Wnt/genética , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , beta Catenina/metabolismo
4.
Dev Biol ; 317(2): 467-79, 2008 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-18394596

RESUMEN

In zebrafish, the endoderm originates at the blastula stage from the most marginal blastomeres. Through a series of complex morphogenetic movements and differentiation events, the endodermal germ layer gives rise to the epithelial lining of the digestive tract as well as its associated organs such as the liver, pancreas, and swim bladder. How endodermal cells differentiate into distinct cell types such as hepatocytes or endocrine and exocrine pancreatic cells remains a major question. In a forward genetic screen for genes regulating endodermal organ development, we identified mutations at the shiri locus that cause defects in the development of a number of endodermal organs including the liver and pancreas. Detailed phenotypic analyses indicate that these defects are partially due to a reduction in endodermal expression of the hairy/enhancer of split-related gene, her5, at mid to late gastrulation stages. Using the Tg(0.7her5:EGFP)(ne2067) line, we show that her5 is expressed in the endodermal precursors that populate the pharyngeal region as well as the organ-forming region. We also find that knocking down her5 recapitulates some of the endodermal phenotypes of shiri mutants, further revealing the role of her5 in endoderm development. Positional cloning reveals that shiri encodes Med12, a regulatory subunit of the transcriptional Mediator complex recently associated with two human syndromes. Additional studies indicate that Med12 modulates the ability of Casanova/Sox32 to induce sox17 expression. Thus, detailed phenotypic analyses of embryos defective in a component of the Mediator complex have revealed new insights into discrete aspects of vertebrate endoderm development, and provide possible explanations for the craniofacial and digestive system defects observed in humans with mutations in MED12.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular/fisiología , Endodermo/embriología , Regulación del Desarrollo de la Expresión Génica , Fenotipo , Factores de Transcripción/metabolismo , Vertebrados/embriología , Proteínas de Pez Cebra/metabolismo , Animales , Secuencia de Bases , Línea Celular , Cartilla de ADN/genética , Proteínas de Unión al ADN/metabolismo , Endodermo/metabolismo , Proteínas del Grupo de Alta Movilidad/metabolismo , Etiquetado Corte-Fin in Situ , Complejo Mediador , Datos de Secuencia Molecular , Mutagénesis , Polimorfismo de Longitud del Fragmento de Restricción/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción SOXF , Análisis de Secuencia de ADN , Factores de Transcripción/genética , Proteínas de Pez Cebra/genética
5.
Mech Dev ; 120(1): 5-18, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12490292

RESUMEN

Recent studies in zebrafish have contributed to our understanding of early endoderm formation in vertebrates. Specifically, they have illustrated the importance of Nodal signaling as well as three transcription factors, Faust/Gata5, Bonnie and Clyde, and Casanova, in this process. Ongoing genetic and embryological studies in zebrafish are also contributing to our understanding of later aspects of endoderm development, including the formation of the gut and its associated organs, the liver and pancreas. The generation of transgenic lines expressing GFP in these organs promises to be particularly helpful in such studies.


Asunto(s)
Endodermo , Hígado/embriología , Páncreas/embriología , Pez Cebra/embriología , Animales , Inducción Embrionaria , Gástrula , Mesodermo , Morfogénesis
6.
Dev Biol ; 307(1): 29-42, 2007 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-17531218

RESUMEN

Formation of a functional vasculature during mammalian development is essential for embryonic survival. In addition, imbalance in blood vessel growth contributes to the pathogenesis of numerous disorders. Most of our understanding of vascular development and blood vessel growth comes from investigating the Vegf signaling pathway as well as the recent observation that molecules involved in axon guidance also regulate vascular patterning. In order to take an unbiased, yet focused, approach to identify novel genes regulating vascular development, we performed a three-step ENU mutagenesis screen in zebrafish. We first screened live embryos visually, evaluating blood flow in the main trunk vessels, which form by vasculogenesis, and the intersomitic vessels, which form by angiogenesis. Embryos that displayed reduced or absent circulation were fixed and stained for endogenous alkaline phosphatase activity to reveal blood vessel morphology. All putative mutants were then crossed into the Tg(flk1:EGFP)(s843) transgenic background to facilitate detailed examination of endothelial cells in live and fixed embryos. We screened 4015 genomes and identified 30 mutations affecting various aspects of vascular development. Specifically, we identified 3 genes (or loci) that regulate the specification and/or differentiation of endothelial cells, 8 genes that regulate vascular tube and lumen formation, 8 genes that regulate vascular patterning, and 11 genes that regulate vascular remodeling, integrity and maintenance. Only 4 of these genes had previously been associated with vascular development in zebrafish illustrating the value of this focused screen. The analysis of the newly defined loci should lead to a greater understanding of vascular development and possibly provide new drug targets to treat the numerous pathologies associated with dysregulated blood vessel growth.


Asunto(s)
Vasos Sanguíneos/crecimiento & desarrollo , Genómica/métodos , Transgenes , Animales , Vasos Sanguíneos/embriología , Embrión no Mamífero , Células Endoteliales/citología , Mutagénesis , Mutación , Neovascularización Fisiológica , Vertebrados , Pez Cebra
7.
Development ; 132(18): 4193-204, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16107477

RESUMEN

Defects in cardiac valve morphogenesis and septation of the heart chambers constitute some of the most common human congenital abnormalities. Some of these defects originate from errors in atrioventricular (AV) endocardial cushion development. Although this process is being extensively studied in mouse and chick, the zebrafish system presents several advantages over these models, including the ability to carry out forward genetic screens and study vertebrate gene function at the single cell level. In this paper, we analyze the cellular and subcellular architecture of the zebrafish heart during stages of AV cushion and valve development and gain an unprecedented level of resolution into this process. We find that endocardial cells in the AV canal differentiate morphologically before the onset of epithelial to mesenchymal transformation, thereby defining a previously unappreciated step during AV valve formation. We use a combination of novel transgenic lines and fluorescent immunohistochemistry to analyze further the role of various genetic (Notch and Calcineurin signaling) and epigenetic (heart function) pathways in this process. In addition, from a large-scale forward genetic screen we identified 55 mutants, defining 48 different genes, that exhibit defects in discrete stages of AV cushion development. This collection of mutants provides a unique set of tools to further our understanding of the genetic basis of cell behavior and differentiation during AV valve development.


Asunto(s)
Diferenciación Celular/fisiología , Endocardio/embriología , Válvulas Cardíacas/embriología , Morfogénesis/fisiología , Transducción de Señal/fisiología , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Calcineurina/metabolismo , Diferenciación Celular/genética , Análisis Mutacional de ADN , Endocardio/citología , Fluorescencia , Inmunohistoquímica , Microscopía Confocal , Receptores Notch/metabolismo
8.
Dev Biol ; 253(2): 279-90, 2003 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-12645931

RESUMEN

Despite the essential functions of the digestive system, much remains to be learned about the cellular and molecular mechanisms responsible for digestive organ morphogenesis and patterning. We introduce a novel zebrafish transgenic line, the gutGFP line, that expresses GFP throughout the digestive system, and use this tool to analyze the development of the liver. Our studies reveal two phases of liver morphogenesis: budding and growth. The budding period, which can be further subdivided into three stages, starts when hepatocytes first aggregate, shortly after 24 h postfertilization (hpf), and ends with the formation of a hepatic duct at 50 hpf. The growth phase immediately follows and is responsible for a dramatic alteration of liver size and shape. We also analyze gene expression in the developing liver and find a correlation between the expression of certain transcription factor genes and the morphologically defined stages of liver budding. To further expand our understanding of budding morphogenesis, we use loss-of-function analyses to investigate factors potentially involved in this process. It had been reported that no tail mutant embryos appear to lack a liver primordium, as assessed by gata6 expression. However, analysis of gutGFP embryos lacking Ntl show that the liver is in fact present. We also find that, in these embryos, the direction of liver budding does not correlate with the direction of intestinal looping, indicating that the left/right behavior of these tissues can be uncoupled. In addition, we use the cloche mutation to analyze the role of endothelial cells in liver morphogenesis, and find that in zebrafish, unlike what has been reported in mouse, endothelial cells do not appear to be necessary for the budding of this organ.


Asunto(s)
Hígado/embriología , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Tipificación del Cuerpo , Sistema Digestivo/embriología , Endotelio/embriología , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes , Proteínas Luminiscentes/genética , Oligodesoxirribonucleótidos/genética , Proteínas Recombinantes/genética , Pez Cebra/genética
9.
Dev Biol ; 261(1): 197-208, 2003 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-12941629

RESUMEN

Recent studies have suggested that the zebrafish pancreas develops from a single pancreatic anlage, located on the dorsal aspect of the developing gut. However, using a transgenic zebrafish line that expresses GFP throughout the endoderm, we report that, in fact, two pancreatic anlagen join to form the pancreas. One anlage is located on the dorsal aspect of the developing gut and is present by 24 h postfertilization (hpf), the second anlage is located on the ventral aspect of the developing gut in a position anterior to the dorsal anlage and is present by 40 hpf. These two buds merge by 52 hpf to form the pancreas. Using heart and soul mutant embryos, in which the pancreatic anlagen most often do not fuse, we show that the posterior bud generates only endocrine tissue, while the anterior bud gives rise to the pancreatic duct and exocrine cells. Interestingly, at later stages, the anterior bud also gives rise to a small number of endocrine cells usually present near the pancreatic duct. Altogether, these studies show that in zebrafish, as in the other model systems analyzed to date, the pancreas arises from multiple buds. To analyze whether other features of pancreas development are conserved and investigate the influence of surrounding tissues on pancreas development, we examined the role of the vasculature in this process. Contrary to reports in other model systems, we find that, although vascular endothelium is in contact with the posterior bud throughout pancreas development, its absence in cloche mutant embryos does not appear to affect the early morphogenesis or differentiation of the pancreas.


Asunto(s)
Páncreas/embriología , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Endotelio Vascular/embriología , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes , Proteínas Luminiscentes/genética , Modelos Biológicos , Mutación , Páncreas/irrigación sanguínea , Páncreas/citología , Páncreas/metabolismo , Proteínas Recombinantes/genética , Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA