Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(9): e2317322121, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38377209

RESUMEN

The ubiquitous RNA chaperone Hfq is involved in the regulation of key biological processes in many species across the bacterial kingdom. In the opportunistic human pathogen Klebsiella pneumoniae, deletion of the hfq gene affects the global transcriptome, virulence, and stress resistance; however, the ligands of the major RNA-binding protein in this species have remained elusive. In this study, we have combined transcriptomic, co-immunoprecipitation, and global RNA interactome analyses to compile an inventory of conserved and species-specific RNAs bound by Hfq and to monitor Hfq-mediated RNA-RNA interactions. In addition to dozens of RNA-RNA pairs, our study revealed an Hfq-dependent small regulatory RNA (sRNA), DinR, which is processed from the 3' terminal portion of dinI mRNA. Transcription of dinI is controlled by the master regulator of the SOS response, LexA. As DinR accumulates in K. pneumoniae in response to DNA damage, the sRNA represses translation of the ftsZ transcript by occupation of the ribosome binding site. Ectopic overexpression of DinR causes depletion of ftsZ mRNA and inhibition of cell division, while deletion of dinR antagonizes cell elongation in the presence of DNA damage. Collectively, our work highlights the important role of RNA-based gene regulation in K. pneumoniae and uncovers the central role of DinR in LexA-controlled division inhibition during the SOS response.


Asunto(s)
Klebsiella pneumoniae , ARN Pequeño no Traducido , Humanos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , ARN Mensajero/metabolismo , Ribosomas/metabolismo , ARN Pequeño no Traducido/genética , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , División Celular/genética , Proteína de Factor 1 del Huésped/genética , Proteína de Factor 1 del Huésped/metabolismo , Regulación Bacteriana de la Expresión Génica
2.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34504005

RESUMEN

Fungi of the genus Mortierella occur ubiquitously in soils where they play pivotal roles in carbon cycling, xenobiont degradation, and promoting plant growth. These important fungi are, however, threatened by micropredators such as fungivorous nematodes, and yet little is known about their protective tactics. We report that Mortierella verticillata NRRL 6337 harbors a bacterial endosymbiont that efficiently shields its host from nematode attacks with anthelmintic metabolites. Microscopic investigation and 16S ribosomal DNA analysis revealed that a previously overlooked bacterial symbiont belonging to the genus Mycoavidus dwells in M. verticillata hyphae. Metabolic profiling of the wild-type fungus and a symbiont-free strain obtained by antibiotic treatment as well as genome analyses revealed that highly cytotoxic macrolactones (CJ-12,950 and CJ-13,357, syn necroxime C and D), initially thought to be metabolites of the soil-inhabiting fungus, are actually biosynthesized by the endosymbiont. According to comparative genomics, the symbiont belongs to a new species (Candidatus Mycoavidus necroximicus) with 12% of its 2.2 Mb genome dedicated to natural product biosynthesis, including the modular polyketide-nonribosomal peptide synthetase for necroxime assembly. Using Caenorhabditis elegans and the fungivorous nematode Aphelenchus avenae as test strains, we show that necroximes exert highly potent anthelmintic activities. Effective host protection was demonstrated in cocultures of nematodes with symbiotic and chemically complemented aposymbiotic fungal strains. Image analysis and mathematical quantification of nematode movement enabled evaluation of the potency. Our work describes a relevant role for endofungal bacteria in protecting fungi against mycophagous nematodes.


Asunto(s)
Antihelmínticos/farmacología , Burkholderiaceae/fisiología , Lactonas/farmacología , Metagenoma , Mortierella/fisiología , Nematodos/efectos de los fármacos , Simbiosis , Animales , Genómica , Redes y Vías Metabólicas , Mortierella/efectos de los fármacos , Nematodos/patogenicidad , Péptido Sintasas/genética , Péptido Sintasas/metabolismo , Filogenia , Microbiología del Suelo
3.
Appl Microbiol Biotechnol ; 107(2-3): 819-834, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36480041

RESUMEN

Conidia of the airborne human-pathogenic fungus Aspergillus fumigatus are inhaled by humans. In the lung, they are phagocytosed by alveolar macrophages and intracellularly processed. In macrophages, however, conidia can interfere with the maturation of phagolysosomes to avoid their elimination. To investigate whether polymeric particles (PPs) can reach this intracellular pathogen in macrophages, we formulated dye-labeled PPs with a size allowing for their phagocytosis. PPs were efficiently taken up by RAW 264.7 macrophages and were found in phagolysosomes. When macrophages were infected with conidia prior to the addition of PPs, we found that they co-localized in the same phagolysosomes. Mechanistically, the fusion of phagolysosomes containing PPs with phagolysosomes containing conidia was observed. Increasing concentrations of PPs increased fusion events, resulting in 14% of phagolysosomes containing both conidia and PPs. We demonstrate that PPs can reach conidia-containing phagolysosomes, making these particles a promising carrier system for antimicrobial drugs to target intracellular pathogens. KEY POINTS: • Polymer particles of a size larger than 500 nm are internalized by macrophages and localized in phagolysosomes. • These particles can be delivered to Aspergillus fumigatus conidia-containing phagolysosomes of macrophages. • Enhanced phagolysosome fusion by the use of vacuolin1 can increase particle delivery.


Asunto(s)
Aspergillus fumigatus , Fagosomas , Humanos , Esporas Fúngicas , Macrófagos/microbiología , Fagocitosis
4.
Mol Ther ; 29(1): 338-346, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-32966769

RESUMEN

Complement factor C5a was originally identified as a powerful promoter of inflammation through activation of the C5a receptor 1 (C5ar1). Recent evidence suggests involvement of C5a not only in pro- but also in anti-inflammatory signaling. The present study aims to unveil the role of C5ar1 as potential therapeutic target in a murine sepsis model. Our study discloses a significantly increased survival in models of mild to moderate but not severe sepsis of C5ar1-deficient mice. The decreased mortality of C5ar1-deficient mice is accompanied by improved pathogen clearance and largely preserved liver function. C5ar1-deficient mice exhibited a significantly increased production of the pro-inflammatory mediator interferon-γ (IFN-γ) and a decreased production of the anti-inflammatory cytokine interleukin-10 (IL-10). Together, these data uncover C5a signaling as a mediator of immunosuppressive processes during sepsis and describe the C5ar1 and related changes of the IFN-γ to IL-10 ratio as markers for the immunological (dys)function accompanying sepsis.


Asunto(s)
Biomarcadores , Susceptibilidad a Enfermedades/inmunología , Inmunomodulación , Receptor de Anafilatoxina C5a/metabolismo , Sepsis/metabolismo , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Inmunidad Innata , Inmunomodulación/efectos de los fármacos , Mediadores de Inflamación/metabolismo , Ratones , Ratones Noqueados , Terapia Molecular Dirigida , Fenotipo , Receptor de Anafilatoxina C5a/antagonistas & inhibidores , Receptor de Anafilatoxina C5a/genética , Sepsis/diagnóstico , Sepsis/tratamiento farmacológico , Sepsis/etiología
6.
Cytometry A ; 99(12): 1218-1229, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34060210

RESUMEN

In biomedical research, the migration behavior of cells and interactions between various cell types are frequently studied subjects. An automated and quantitative analysis of time-lapse microscopy data is an essential component of these studies, especially when characteristic migration patterns need to be identified. Plenty of software tools have been developed to serve this need. However, the majority of algorithms is designed for fluorescently labeled cells, even though it is well-known that fluorescent labels can substantially interfere with the physiological behavior of interacting cells. We here present a fully revised version of our algorithm for migration and interaction tracking (AMIT), which includes a novel segmentation approach. This approach allows segmenting label-free cells with high accuracy and also enables detecting almost all cells within the field of view. With regard to cell tracking, we designed and implemented a new method for cluster detection and splitting. This method does not rely on any geometrical characteristics of individual objects inside a cluster but relies on monitoring the events of cell-cell fusion from and cluster fission into single cells forward and backward in time. We demonstrate that focusing on these events provides accurate splitting of transient clusters. Furthermore, the substantially improved quantitative analysis of cell migration by the revised version of AMIT is more than two orders of magnitude faster than the previous implementation, which makes it feasible to process video data at higher spatial and temporal resolutions.


Asunto(s)
Algoritmos , Rastreo Celular , Movimiento Celular , Humanos , Procesamiento de Imagen Asistido por Computador , Microscopía , Programas Informáticos
7.
J Immunol ; 203(6): 1493-1501, 2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31399517

RESUMEN

During somatic hypermutation (SHM) of Ig genes in germinal center B cells, lesions introduced by activation-induced cytidine deaminase are processed by multiple error-prone repair pathways. Although error-free repair by homologous recombination (HR) is crucial to prevent excessive DNA strand breakage at activation-induced cytidine deaminase off-target genes, its role at the hypermutating Ig locus in the germinal center is unexplored. Using B cell-specific inactivation of the critical HR factor Brca2, we detected decreased proliferation, survival, and thereby class switching of ex vivo-activated B cells. Intriguingly, an HR defect allowed for a germinal center reaction and affinity maturation in vivo, albeit at reduced amounts. Analysis of SHM revealed that a certain fraction of DNA lesions at C:G bp was indeed repaired in an error-free manner via Brca2 instead of being processed by error-prone translesion polymerases. By applying a novel pseudo-time in silico analysis of mutational processes, we found that the activity of A:T mutagenesis during SHM increased during a germinal center reaction, but this was in part defective in Brca2-deficient mice. These mutation pattern changes in Brca2-deficient B cells were mostly specific for the Ig V region, suggesting a local or time-dependent need for recombination repair to survive high rates of SHM and especially A:T mutagenesis.


Asunto(s)
Centro Germinal/fisiología , Recombinación Homóloga/genética , Mutación/genética , Animales , Linfocitos B/fisiología , Proteína BRCA2/genética , Citidina Desaminasa/genética , ADN/genética , Daño del ADN/genética , Femenino , Genes de Inmunoglobulinas/genética , Activación de Linfocitos/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Hipermutación Somática de Inmunoglobulina/genética
8.
J Infect Dis ; 221(12): 2060-2071, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31993642

RESUMEN

BACKGROUND: Candida albicans and Candida glabrata are the 2 most prevalent Candida species causing bloodstream infections. Patterns of innate immune activation triggered by the 2 fungi differ considerably. METHODS: To analyze human natural killer (NK) cell activation by both species, we performed ex vivo whole-blood infection assays and confrontation assays with primary human NK cells. RESULTS: C. albicans was a stronger activator for isolated human NK cells than C. glabrata. In contrast, activation of blood NK cells, characterized by an upregulated surface exposure of early activation antigen CD69 and death receptor ligand TRAIL, as well as interferon-γ (IFN-γ) secretion, was more pronounced during C. glabrata infection. NK cell activation in blood is mediated by humoral mediators released by other immune cells and does not depend on direct activation by fungal cells. Cross-talk between Candida-confronted monocyte-derived dendritic cells (moDC) and NK cells resulted in the same NK activation phenotype as NK cells in human blood. Blocking experiments and cytokine substitution identified interleukin-12 as a critical mediator in regulation of primary NK cells by moDC. CONCLUSIONS: Activation of human NK cells in response to Candida in human blood mainly occurs indirectly by mediators released from monocytic cells.


Asunto(s)
Candida albicans/inmunología , Candidiasis/inmunología , Células Dendríticas/metabolismo , Interleucina-12/metabolismo , Células Asesinas Naturales/inmunología , Antígenos CD/metabolismo , Antígenos de Diferenciación de Linfocitos T/metabolismo , Capa Leucocitaria de la Sangre , Candida glabrata/inmunología , Candidiasis/sangre , Candidiasis/microbiología , Comunicación Celular/inmunología , Células Cultivadas , Voluntarios Sanos , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunidad Innata , Células Asesinas Naturales/metabolismo , Lectinas Tipo C/metabolismo , Activación de Linfocitos , Cultivo Primario de Células , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Regulación hacia Arriba/inmunología
9.
Environ Microbiol ; 22(9): 3722-3740, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32583550

RESUMEN

Mucormycosis is an emergent, fatal fungal infection of humans and warm-blooded animals caused by species of the order Mucorales. Immune cells of the innate immune system serve as the first line of defence against inhaled spores. Alveolar macrophages were challenged with the mucoralean fungus Lichtheimia corymbifera and subjected to biotinylation and streptavidin enrichment procedures followed by LC-MS/MS analyses. A total of 28 host proteins enriched for binding to macrophage-L. corymbifera interaction. Among those, the HSP70-family protein Hspa8 was found to be predominantly responsive to living and heat-killed spores of a virulent and an attenuated strain of L. corymbifera. Confocal scanning laser microscopy of infected macrophages revealed colocalization of Hspa8 with phagocytosed spores of L. corymbifera. The amount of detectable Hspa8 was dependent on the multiplicity of infection. Incubation of alveolar macrophages with an anti-Hspa8 antibody prior to infection reduced their capability to phagocytose spores of L. corymbifera. In contrast, anti-Hspa8 antibodies did not abrogate the phagocytosis of Aspergillus fumigatus conidia by macrophages. These results suggest an important contribution of the heat-shock family protein Hspa8 in the recognition of spores of the mucoralean fungus L. corymbifera by host alveolar macrophages and define a potential immunomodulatory therapeutic target.


Asunto(s)
Proteínas de Choque Térmico/metabolismo , Macrófagos Alveolares/fisiología , Mucorales/metabolismo , Animales , Anticuerpos/farmacología , Aspergillus fumigatus , Línea Celular , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/inmunología , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/microbiología , Ratones , Fagocitosis/efectos de los fármacos , Proteómica , Esporas Fúngicas
10.
Environ Microbiol ; 21(12): 4563-4581, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31330072

RESUMEN

Mucormycoses are life-threatening infections that affect patients suffering from immune deficiencies. We performed phagocytosis assays confronting various strains of Lichtheimia species with alveolar macrophages, which form the first line of defence of the innate immune system. To investigate 17 strains from four different continents in a comparative fashion, transmitted light and confocal fluorescence microscopy was applied in combination with automated image analysis. This interdisciplinary approach enabled the objective and quantitative processing of the big volume of image data. Applying machine-learning supported methods, a spontaneous clustering of the strains was revealed in the space of phagocytic measures. This clustering was not driven by measures of fungal morphology but rather by the geographical origin of the fungal strains. Our study illustrates the crucial contribution of machine-learning supported automated image analysis to the qualitative discovery and quantitative comparison of major factors affecting host-pathogen interactions. We found that the phagocytic vulnerability of Lichtheimia species depends on their geographical origin, where strains within each geographic region behaved similarly, but strongly differed amongst the regions. Based on this clustering, we were able to also classify clinical isolates with regard to their potential geographical origin.


Asunto(s)
Macrófagos Alveolares/inmunología , Mucorales/inmunología , Fagocitosis/inmunología , Animales , Aspergillus fumigatus/inmunología , Aspergillus fumigatus/aislamiento & purificación , Células Cultivadas , Microbiología Ambiental , Interacciones Huésped-Patógeno , Humanos , Procesamiento de Imagen Asistido por Computador , Ratones , Tipificación Molecular , Mucorales/clasificación , Mucorales/aislamiento & purificación , Mucormicosis/inmunología , Mucormicosis/microbiología , Filogeografía
11.
Small ; 15(4): e1802384, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30549235

RESUMEN

To efficiently exploit the potential of several millions of droplets that can be considered as individual bioreactors in microfluidic experiments, methods to encode different experimental conditions in droplets are needed. The approach presented here is based on coencapsulation of colored polystyrene beads with biological samples. The decoding of the droplets, as well as content quantification, are performed by automated analysis of triggered images of individual droplets in-flow using bright-field microscopy. The decoding strategy combines bead classification using a random forest classifier and Bayesian inference to identify different codes and thus experimental conditions. Antibiotic susceptibility testing of nine different antibiotics and the determination of the minimal inhibitory concentration of a specific antibiotic against a laboratory strain of Escherichia coli are presented as a proof-of-principle. It is demonstrated that this method allows successful encoding and decoding of 20 different experimental conditions within a large droplet population of more than 105 droplets per condition. The decoding strategy correctly assigns 99.6% of droplets to the correct condition and a method for the determination of minimal inhibitory concentration using droplet microfluidics is established. The current encoding and decoding pipeline can readily be extended to more codes by adding more bead colors or color combinations.

12.
Immunity ; 33(1): 84-95, 2010 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-20643339

RESUMEN

Germinal centers (GCs) are specialized microenvironments where antigen-activated B cells undergo proliferation, immunoglobulin (Ig) class switch recombination, somatic hypermutation (SHM), and affinity maturation. Within GCs, follicular dendritic cells (FDCs) are key players in driving these events via direct interaction with GC B cells. Here, we provide in vivo evidence that FDCs express and upregulate Toll-like-receptor (TLR) 4 in situ during germinal center reactions, confirm that their maturation is driven by TLR4, and associate the role of FDC-expressed TLR4 with quantitative and qualitative affects of GC biology. In iterative cycles of predictions by in silico modeling subsequently verified by in vivo experiments, we demonstrated that TLR4 signaling modulates FDC activation, strongly impacting SHM and generation of Ig class-switched high-affinity plasma and memory B cells. Thus, our data place TLR4 in the heart of adaptive humoral immunity, providing further insight into mechanisms driving GCs arising in both health and disease.


Asunto(s)
Linfocitos B/metabolismo , Células Dendríticas Foliculares/metabolismo , Centro Germinal/metabolismo , Receptor Toll-Like 4/metabolismo , Animales , Anticuerpos Bloqueadores , Afinidad de Anticuerpos , Antígenos de Diferenciación/biosíntesis , Linfocitos B/inmunología , Linfocitos B/patología , Trasplante de Médula Ósea , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Células Dendríticas Foliculares/patología , Centro Germinal/patología , Cambio de Clase de Inmunoglobulina/genética , Cambio de Clase de Inmunoglobulina/inmunología , Memoria Inmunológica , Ligandos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C3H , Mutación/genética , Quimera por Radiación , Transducción de Señal/inmunología , Hipermutación Somática de Inmunoglobulina/genética , Hipermutación Somática de Inmunoglobulina/inmunología , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/inmunología
13.
J Infect Dis ; 217(3): 358-370, 2018 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-28968817

RESUMEN

Pneumococcal hemolytic uremic syndrome (HUS) in children is caused by infections with Streptococcus pneumoniae. Because endothelial cell damage is a hallmark of HUS, we studied how HUS-inducing pneumococci derived from infant HUS patients during the acute phase disrupt the endothelial layer. HUS pneumococci efficiently bound human plasminogen. These clinical isolates of HUS pneumococci efficiently bound human plasminogen via the bacterial surface proteins Tuf and PspC. When activated to plasmin at the bacterial surface, the active protease degraded fibrinogen and cleaved C3b. Here, we show that PspC is a pneumococcal plasminogen receptor and that plasmin generated on the surface of HUS pneumococci damages endothelial cells, causing endothelial retraction and exposure of the underlying matrix. Thus, HUS pneumococci damage endothelial cells in the blood vessels and disturb local complement homeostasis. Thereby, HUS pneumococci promote a thrombogenic state that drives HUS pathology.


Asunto(s)
Adhesión Bacteriana , Proteínas Bacterianas/metabolismo , Células Endoteliales/patología , Fibrinolisina/metabolismo , Síndrome Hemolítico-Urémico/microbiología , Plasminógeno/metabolismo , Streptococcus pneumoniae/fisiología , Preescolar , Femenino , Humanos , Infecciones Neumocócicas/microbiología , Unión Proteica , Streptococcus pneumoniae/aislamiento & purificación
14.
Cytometry A ; 93(3): 346-356, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28914994

RESUMEN

Host-fungus interactions have gained a lot of interest in the past few decades, mainly due to an increasing number of fungal infections that are often associated with a high mortality rate in the absence of effective therapies. These interactions can be studied at the genetic level or at the functional level via imaging. Here, we introduce a new image processing method that quantifies the interaction between host cells and fungal invaders, for example, alveolar macrophages and the conidia of Aspergillus fumigatus. The new technique relies on the information content of transmitted light bright field microscopy images, utilizing the Hessian matrix eigenvalues to distinguish between unstained macrophages and the background, as well as between macrophages and fungal conidia. The performance of the new algorithm was measured by comparing the results of our method with that of an alternative approach that was based on fluorescence images from the same dataset. The comparison shows that the new algorithm performs very similarly to the fluorescence-based version. Consequently, the new algorithm is able to segment and characterize unlabeled cells, thus reducing the time and expense that would be spent on the fluorescent labeling in preparation for phagocytosis assays. By extending the proposed method to the label-free segmentation of fungal conidia, we will be able to reduce the need for fluorescence-based imaging even further. Our approach should thus help to minimize the possible side effects of fluorescence labeling on biological functions. © 2017 International Society for Advancement of Cytometry.


Asunto(s)
Aspergilosis/patología , Aspergillus fumigatus/inmunología , Interacciones Huésped-Patógeno/fisiología , Procesamiento de Imagen Asistido por Computador/métodos , Macrófagos Alveolares/inmunología , Esporas Fúngicas/inmunología , Algoritmos , Animales , Aspergilosis/microbiología , Colorantes Fluorescentes , Macrófagos Alveolares/microbiología , Ratones , Microscopía Confocal , Coloración y Etiquetado
15.
Cytometry A ; 93(3): 357-370, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28976646

RESUMEN

Automated microscopy has given researchers access to great amounts of live cell imaging data from in vitro and in vivo experiments. Much focus has been put on extracting cell tracks from such data using a plethora of segmentation and tracking algorithms, but further analysis is normally required to draw biologically relevant conclusions. Such relevant conclusions may be whether the migration is directed or not, whether the population has homogeneous or heterogeneous migration patterns. This review focuses on the analysis of cell migration data that are extracted from time lapse images. We discuss a range of measures and models used to analyze cell tracks independent of the biological system or the way the tracks were obtained. For single-cell migration, we focus on measures and models giving examples of biological systems where they have been applied, for example, migration of bacteria, fibroblasts, and immune cells. For collective migration, we describe the model systems wound healing, neural crest migration, and Drosophila gastrulation and discuss methods for cell migration within these systems. We also discuss the role of the extracellular matrix and subsequent differences between track analysis in vitro and in vivo. Besides methods and measures, we are putting special focus on the need for openly available data and code, as well as a lack of common vocabulary in cell track analysis. © 2017 International Society for Advancement of Cytometry.


Asunto(s)
Movimiento Celular/fisiología , Rastreo Celular/métodos , Imagen de Lapso de Tiempo/métodos , Algoritmos , Animales , Drosophila/citología , Matriz Extracelular/fisiología , Procesamiento de Imagen Asistido por Computador/métodos , Cresta Neural/fisiología , Cicatrización de Heridas/fisiología
16.
J Immunol ; 197(2): 620-9, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27279373

RESUMEN

The autoimmune renal disease deficient for complement factor H-related (CFHR) genes and autoantibody-positive form of hemolytic uremic syndrome is characterized by the presence of autoantibodies specific for the central complement regulator, factor H, combined with a homozygous deficiency, mostly in CFHR3 and CFHR1 Because FHR3 and FHR1 bind to C3d and inactivated C3b, which are ligands for complement receptor type 2 (CR2/CD21), the aim of the current study was to examine whether FHR3-C3d or FHR1-C3d complexes modulate B cell activation. Laser-scanning microscopy and automated image-based analysis showed that FHR3, but not FHR1 or factor H, blocked B cell activation by the BCR coreceptor complex (CD19/CD21/CD81). FHR3 bound to C3d, thereby inhibiting the interaction between C3d and CD21 and preventing colocalization of the coreceptor complex with the BCR. FHR3 neutralized the adjuvant effect of C3d on B cells, as shown by inhibited intracellular CD19 and Akt phosphorylation in Raji cells, as well as Ca(2+) release in peripheral B cells. In cases of CFHR3/CFHR1 deficiency, the FHR3 binding sites on C3d are occupied by factor H, which lacks B cell-inhibitory functions. These data provide evidence that FHR3, which is absent in patients with the autoimmune form of hemolytic uremic syndrome, is involved in B cell regulation.


Asunto(s)
Linfocitos B/inmunología , Proteínas Sanguíneas/inmunología , Complemento C3d/inmunología , Síndrome Hemolítico-Urémico/inmunología , Activación de Linfocitos/inmunología , Separación Celular , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Humanos , Procesamiento de Imagen Asistido por Computador , Microscopía Confocal
17.
J Am Soc Nephrol ; 28(2): 452-459, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27487796

RESUMEN

The total number of glomeruli is a fundamental parameter of kidney function but very difficult to determine using standard methodology. Here, we counted all individual glomeruli in murine kidneys and sized the capillary tufts by combining in vivo fluorescence labeling of endothelial cells, a novel tissue-clearing technique, lightsheet microscopy, and automated registration by image analysis. Total hands-on time per organ was <1 hour, and automated counting/sizing was finished in <3 hours. We also investigated the novel use of ethyl-3-phenylprop-2-enoate (ethyl cinnamate) as a nontoxic solvent-based clearing reagent that can be handled without specific safety measures. Ethyl cinnamate rapidly cleared all tested organs, including calcified bone, but the fluorescence of proteins and immunohistochemical labels was maintained over weeks. Using ethyl cinnamate-cleared kidneys, we also quantified the average creatinine clearance rate per glomerulus. This parameter decreased in the first week of experimental nephrotoxic nephritis, whereas reduction in glomerular numbers occurred much later. Our approach delivers fundamental parameters of renal function, and because of its ease of use and speed, it is suitable for high-throughput analysis and could greatly facilitate studies of the effect of kidney diseases on whole-organ physiology.


Asunto(s)
Capilares/patología , Enfermedades Renales/patología , Glomérulos Renales/patología , Riñón/irrigación sanguínea , Riñón/patología , Animales , Femenino , Ratones , Microscopía , Tamaño de los Órganos
18.
J Immunol ; 194(3): 1199-210, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25539819

RESUMEN

Polymorphonuclear neutrophilic granulocytes (PMN) as cellular components of innate immunity play a crucial role in the defense against systemic Candida albicans infection. To analyze stimuli that are required for PMN activity during C. albicans infection in a situation similar to in vivo, we used a human whole-blood infection model. In this model, PMN activation 10 min after C. albicans infection was largely dependent on the anaphylatoxin C5a. Most importantly, C5a enabled blood PMN to overcome filament-restricted recognition of C. albicans and allowed efficient elimination of nonfilamentous C. albicans cph1Δ/efg1Δ from blood. Major PMN effector mechanisms, including oxidative burst, release of secondary granule contents and initial fungal phagocytosis could be prevented by blocking C5a receptor signaling. Identical effects were achieved using a humanized Ab specifically targeting human C5a. Phagocytosis of C. albicans 10 min postinfection was mediated by C5a-dependent enhancement of CD11b surface expression on PMN, thus establishing the C5a-C5aR-CD11b axis as a major modulator of early anti-Candida immune responses in human blood. In contrast, phagocytosis of C. albicans by PMN 60 min postinfection occurred almost independently of C5a and mainly contributed to activation of phagocytically active PMN at later time points. Our results show that C5a is a critical mediator in human blood during C. albicans infection.


Asunto(s)
Complemento C5a/inmunología , Hongos/inmunología , Micosis/inmunología , Neutrófilos/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacología , Antígeno CD11b/metabolismo , Candida albicans/inmunología , Candidiasis/inmunología , Complemento C5a/antagonistas & inhibidores , Complemento C5a/metabolismo , Humanos , Micosis/metabolismo , Activación Neutrófila/efectos de los fármacos , Activación Neutrófila/inmunología , Neutrófilos/metabolismo , Fagocitosis/inmunología , Receptor de Anafilatoxina C5a/metabolismo , Factores de Tiempo
19.
Cell Microbiol ; 17(9): 1259-76, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25850517

RESUMEN

Candida albicans and Candida glabrata account for the majority of candidiasis cases worldwide. Although both species are in the same genus, they differ in key virulence attributes. Within this work, live cell imaging was used to examine the dynamics of neutrophil activation after confrontation with either C. albicans or C. glabrata. Analyses revealed higher phagocytosis rates of C. albicans than C. glabrata that resulted in stronger PMN (polymorphonuclear cells) activation by C. albicans. Furthermore, we observed differences in the secretion of chemokines, indicating chemotactic differences in PMN signalling towards recruitment of further immune cells upon confrontation with Candida spp. Supernatants from co-incubations of neutrophils with C. glabrata primarily attracted monocytes and increased the phagocytosis of C. glabrata by monocytes. In contrast, PMN activation by C. albicans resulted in recruitment of more neutrophils. Two complex infection models confirmed distinct targeting of immune cell populations by the two Candida spp.: In a human whole blood infection model, C. glabrata was more effectively taken up by monocytes than C. albicans and histopathological analyses of murine model infections confirmed primarily monocytic infiltrates in C. glabrata kidney infection in contrast to PMN-dominated infiltrates in C. albicans infection. Taken together, our data demonstrate that the human opportunistic fungi C. albicans and C. glabrata are differentially recognized by neutrophils and one outcome of this differential recognition is the preferential uptake of C. glabrata by monocytes.


Asunto(s)
Candida albicans/inmunología , Candida glabrata/inmunología , Candidiasis/inmunología , Monocitos/inmunología , Monocitos/microbiología , Activación Neutrófila , Fagocitosis , Animales , Candidiasis/microbiología , Candidiasis/patología , Células Cultivadas , Citocinas/metabolismo , Modelos Animales de Enfermedad , Histocitoquímica , Humanos , Riñón/microbiología , Riñón/patología , Ratones
20.
Fungal Genet Biol ; 84: 37-40, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26385824

RESUMEN

Interaction between fungal pathogens and human phagocytes can lead to remarkably variable outcomes, ranging from intracellular killing to prolonged survival and replication of the pathogen in the host cell. Using live cell imaging we observed primary human neutrophils that release phagocytosed Candida glabrata yeast cells after intracellular killing. This process, for which we propose the name "dumping", adds a new outcome to phagocyte-fungus interaction which may be of potential immunological importance as it allows professional antigen presenting cells to take up and process neutrophil-inactivated pathogens that in their viable state are able to evade intracellular degradation in these cells.


Asunto(s)
Candida glabrata/inmunología , Neutrófilos/inmunología , Neutrófilos/microbiología , Fagocitosis/inmunología , Inmunidad Adaptativa , Candida glabrata/citología , Células Cultivadas , Citoplasma/inmunología , Citoplasma/microbiología , Humanos , Neutrófilos/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA